

RÍO CUARTO, 31 de octubre de 2024.-

VISTO, el Expediente Nro.: 146021 sobre la propuesta de nuevo Plan de Estudio de la carrera Licenciatura en Matemática, elaborado por la Comisión Curricular Permanente de la Carrera con la colaboración de docentes, estudiantes y graduados, y presentada por la Secretaría Académica de la Facultad, y

CONSIDERANDO

Que la nueva matriz curricular de la carrera Licenciatura en Matemática, responde a los lineamientos académicos del Plan Estratégico de la Facultad (PEExa 2019-2023, Resolución del Consejo Directivo Nro.:410/2019) y su extensión.

Que las directrices en la política académica institucional de la UNRC, expresada en el documento titulado: "Hacia un currículum contextualizado, flexible e integrado. Lineamientos para orientar la innovación curricular", aprobado por Resolución del Consejo Superior Nro.: 297/2017, motivaron la revisión y actualización del Plan de Estudio de la mencionada carrera que se presenta.

Que, sobre la base de estos antecedentes y documentos, la Facultad de Ciencias Exactas, Físico-Químicas y Naturales elaboró un Proyecto de Investigación e Innovación para el Mejoramiento Estratégico Institucional, titulado "Abordaje integrado para la innovación curricular de las carreras de Exactas" (aprobado por Resolución Rectoral Nro.: 450/2018), que obra como principal antecedente para la modificación de los planes de estudio de las diferentes carreras de pregrado y grado que dicta la Facultad.

Que, el proyecto del Plan de Estudio de la Licenciatura en Matemática, se enmarca en lo establecido en la Resolución del Consejo Directivo Nro.: 008/2021, que dispone un ordenamiento de los planes de estudio en la UNRC.

Que la propuesta resulta innovadora y tiende a la formación de profesionales que respondan a las necesidades existentes y emergentes de contexto local, regional, nacional y mundial.

Que la Secretaria Académica de la Facultad asesoró y acompañó el proceso, a través de un análisis exhaustivo de la propuesta curricular que se presenta.

Que incluye la Evaluación de la Secretaría Académica de la Universidad Nacional de Río Cuarto.

Que se cuenta con el Despacho de la Comisión de Enseñanza del Consejo Directivo de la Facultad de Ciencias Exactas, Físico-Químicas y Naturales.

Por ello y en uso de las atribuciones conferidas por el Artículo 32 del Estatuto de la Universidad Nacional de Río Cuarto.

EL CONSEJO DIRECTIVO DE LA FACULTAD DE CIENCIAS EXACTAS FÍSICO-QUÍMICAS Y NATURALES

RESUELVE:

ARTÍCULO 1ro.- Aprobar el Nuevo Plan de Estudio de la Carrera **Licenciatura en Matemática**, según se detalla en el ANEXO de la presente resolución.

ARTICULO 2do.- Elevar la presente Resolución para su tratamiento al **CONSEJO SUPERIOR** de la UNRC.

ARTICULO 3ro.- Regístrese, comuníquese. Tomen conocimiento las Áreas de competencia. Cumplido, archívese.

DADA EN LA SALA DE SESIONES DEL CONSEJO DIRECTIVO DE ESTA FACULTAD, A LOS TREINTA Y UN DÍAS DEL MES DE OCTUBRE DE DOS MIL VEINTICUATRO.-

RESOLUCIÓN Nro.: 382/2024

ANEXO

PLAN DE ESTUDIO DE LA CARRERA LICENCIATURA EN MATEMÁTICA

Índice General

- 1 Identificación del proyecto
- 2 Responsables del proyecto
 - 2.1 Organismo Responsable
 - 2.2 Unidad Académica Responsable
 - 2.3 Equipo de trabajo responsable de la elaboración del proyecto

3 Fundamentación

- 3.1 Razones que justifican la creación y o los cambios curriculares del proyecto de formación y que justifican su realización
- 3.2 Razones que determinan la conveniencia de la implementación de proyecto curricular y que justifican su realización.
- 3.3 Correspondencia con los fines y objetivos de la Universidad
- 3.4 Antecedentes
 - 3.4.1 Breve reseña del origen y trayectoria de la carrera, considerando los ámbitos nacional, regional e institucional.
 - 3.4.2 Actividades de docencia, investigación o extensión realizadas por la universidad vinculadas al proyecto.
 - 3.4.3 Experiencias similares realizadas a nivel nacional o internacional que hubieran sido tenidas en cuenta.
 - 3.4.4 Población destinataria
 - 3.4.5 Rasgos y características de la población estudiantil.

4 Objetivos del proyecto

5 Características de la carrera

- 5.1 Nivel
- 5.2 Acreditación
- 5.3 Alcance del título
- 5.4 Actividades profesionales reservadas al título (Incumbencias)
- 5.5 Perfil del Título

- 5.5.1 Conocimientos que constituyen el fundamento teórico-metodológico de su accionar profesional o académico.
- 5.5.2 Capacidades y habilidades requeridas para la realización de las actividades que le incumben.
- 5.6 Requisitos de ingreso
- 5.7 Organización del Plan de Estudios
 - 5.7.1 Ciclos, Trayectos y Áreas
 - 5.7.2 Listado total de asignaturas
 - 5.7.3 Contenidos y metodología
 - 5.7.4 Transversalidad de contenidos y metodología: explicitación de los contenidos y metodologías transversales en los diferentes campos disciplinares o en espacios interdisciplinares.
 - 5.7.5 Correlatividades
 - 5.7.6 Otros requisitos necesarios para el cumplimiento del Plan de Estudios.
 - 5.7.7 Análisis de la congruencia interna de la carrera
 - 5.7.8 Criterios para orientar la implementación del Plan de Estudio en coherencia con las propuestas epistemológicas y metodológicas que lo constituyen.

6 Recursos Humanos

- 6.1 Personal docente
- 6.2 Personal técnico y administrativo

7 Infraestructura Edilicia y Equipamiento

- 7.1 Infraestructura edilicia: descripción de los recursos disponibles y necesidades futuras (localización, capacidad, estado de conservación).
- 7.2 Equipamiento: descripción cualitativa y cuantitativa del equipamiento disponible y de las necesidades futuras.

8 Asignación presupuestaria que demanda su implementación

- 9 Síntesis de la Propuesta presentada.
 - 9.1 Nivel
 - 9.2 Acreditación
 - 9.3 Alcance del título
 - 9.4 Listado total de asignaturas
 - 9.5 Asignaturas optativas propuestas
 - 9.6 Correlatividades

A. Apéndice: Cuadro de correlativas Bibliografía

1. Identificación del proyecto

Plan de Estudios de la Carrera de Licenciatura en Matemática, de la Facultad de Ciencias Exactas, Físico - Químicas y Naturales (FCEFQyN), de la Universidad Nacional de Río Cuarto (UNRC), que reemplaza el Plan de Estudio de la Licenciatura en Matemática aprobado por Resolución del Consejo Directivo (CD) Nº 156/08, ratificada por Resolución del Consejo Superior (CS) Nº 212/08.

2. Responsables del proyecto

2.1 Organismo Responsable

Universidad Nacional de Río Cuarto.

2.2 Unidad Académica Responsable

Facultad de Ciencias Exactas, Físico-Químicas y Naturales.

2.3 Equipo de trabajo responsable de la elaboración del proyecto

Comisión Curricular Permanente de la la Facultad de Ciencias Exactas Físico-Químicas y Naturales de la carrera Licenciatura en Matemática, constituida por integrantes del Departamento de Matemática (DM), Departamento de Física (DF), estudiantes y graduados nombrados por Res CD Nº 111/19 y modificada su composición por Res. CD N° 235/21, 272/21 y 399/23.

3. Fundamentación

3.1 Razones que justifican la creación y o los cambios curriculares del proyecto de formación y que justifican su realización

La dinámica de la ciencia actual, con la aparición de líneas emergentes de estudio, y la propia de nuestra institución hacen necesaria una actualización del plan de estudios de la carrera para que éste de cuenta de los cambios operados.

La actualización contenida en esta propuesta tiene en cuenta los cambios en las normativas de la UNRC en cuanto a criterios para la elaboración de planes de estudio y a lineamientos curriculares definidos para la UNRC. Más específicamente, se pretende ajustar el Plan de Estudios de la Lic. en Matemática a:

- La Resolución CS-UNRC 297/2017 que aprobó el documento "Hacia un currículo contextualizado, flexible e integrado. Lineamientos para la orientación de la innovación curricular" que define dimensiones que la Universidad considera importantes a la hora de elaborar planes de estudios, en particular dimensiones epistemológico-metodológicas, de contextualización, organización, de flexibilidad e integración curricular.
- 2 La Resolución CS-UNRC 298/2017 que implementó la convocatoria a Proyectos de Innovación e Investigación para el Mejoramiento Estratégico Institucional (PIIMEI). La

"2024 - AÑO DE LA DEFENSA DE LA VIDA, LA LIBERTAD Y LA PROPIEDAD"

FCEFQyN participó de esta con el proyecto Abordaje Integrado Para La Innovación Curricular De Las Carreras De Exactas. Como parte de este Proyecto, la Comisión Curricular Permanente de la Licenciatura en Matemática junto con docentes y estudiantes de la carrera emprendió una investigación del currículo de la carrera. Parte de las conclusiones obtenidas fueron plasmadas en el Informe "Actividades de Investigación Evaluativa Licenciatura en Matemática" el cual fue evaluado por expertos en currículo universitario convocados por la UNRC.

- La Resolución CS-UNRC 510/2017 actualizó el Plan Estratégico Institucional (PEI 2017-2023) el cual se constituye como documento orgánico con miras al desarrollo integral de la universidad, con emplazamiento geográfico y social. Los lineamientos del PEI de la UNRC representan la plataforma desde donde avanzar en la proyección de políticas institucionales de la Universidad en su conjunto y para la FCEFQyN en particular, que atienden necesidades actuales y proponen caminos de actuación a futuro.
- 4 La Resolución CD-FCEFQyN 410/2019 que aprobó el Plan Estratégico de la FCEFQyN (PEExa 2019-2023). En particular, en el Capítulo III, Sección 1 define objetivos de la institución para la enseñanza de grado.
- La Resolución CS-UNRC 008/2021 que establece los conceptos, normas y procedimientos que regulan los procesos de elaboración, presentación, formalización, aprobación, seguimiento, evaluación y tramitación de reconocimiento de Nuevos Planes de Estudio y de modificaciones que impliquen nuevas versiones de los Planes de Estudio existentes.

3.2 Razones que determinan la conveniencia de la implementación de proyecto curricular y que justifican su realización.

La presente propuesta incorpora o profundiza los siguientes criterios en la elaboración de planes de estudio:

- Contextualización y visión totalizante. Se analizaron las características de la población concreta de estudiantes a la que va dirigida la propuesta, las características en cuanto a formación e intereses de investigación del plantel de docentes que ejecutará el plan, nuevas áreas emergentes, como el caso del análisis de grandes conjuntos de datos. Además, se tomó en consideración aspectos administrativos, como por ejemplo aquellos que devienen del uso de la plataforma SIAL.
- 2 Flexibilidad curricular. Al ciclo de optativas y trabajo final se agrega una materia electiva.
- Organización curricular mixta. Se definen ciclos de formación y problemas transversales a la práctica docente.
- 4 Transversalidad de la práctica profesional. Este punto es consecuencia del anterior.
- 5 Incorporación de espacios de formación socio-política-cultural y pedagógica.

A esto se suma la necesidad de resolver las siguientes cuestiones del plan vigente:

- 1 Inconsistencia de la carga horaria de asignaturas comunes a distintos planes de estudios (Probabilidades 1987).
- 2 Atender a necesidades emergentes de nuevos desafíos en la enseñanza, modificando correlatividades (Probabilidades 1987).
- 3 La existencia de diversas materias optativas con diferentes denominaciones causa problemas en la ejecución del plan a nivel administrativo. Por lo que se propone una mayor flexibilidad del ciclo de especialización, y que las materias optativas se denominen Optativa I y II.

3.3 Correspondencia con los fines y objetivos de la Universidad

Los fines y objetivos de la Universidad y de la FCEFQyN están definidos en el Estatuto Universitario, en el Plan Estratégico Institucional (PEI) y en el Plan Estratégico de la FCEFQyN (PEExa). El plan de estudios de la Licenciatura de Matemática se enmarca dentro de los objetivos y fines declarados en los anteriores documentos, especialmente por las consideraciones en ellos establecidas que enumeramos debajo.

Estatuto de la UNRC.

Aprobado por Resolución Ministerio de Educación Nº1723/2011. Se define que la Universidad es:

- "Productora, distribuidora y difusora de conocimiento socialmente útil y público, es decir, provisional, histórico, criticable, no dogmático, hipotético, abierto a la pregunta, al cuestionamiento y al contraste riguroso. Como tal deberá ser reflexiva y proactiva, capaz de autoevaluarse en forma permanente y, así, comprender y mejorar sus procesos y sus productos".
- 2 "Una institución que busca la excelencia académica al ofrecer a los estudiantes conocimientos y prácticas de máxima calidad y de significación científica y social".
- 3 "Flexible para adaptarse a la diversificación y expansión de la población estudiantil, a las nuevas tecnologías, a las formas de comunicación y producción de conocimiento, a la movilidad de las profesiones, a la evolución de los paradigmas de la ciencia y a las nuevas condiciones sociales."
- 4 "Innovadora en sus formas de enseñanza, investigación y transferencia educativa y tecnológica".
- "Una institución articulada con el nivel medio, con el subsistema de educación superior no universitaria, con otras Universidades de la región, del país y del mundo y con otras organizaciones sociales y por tener la capacidad de dar respuestas contextualizadas con lo regional".

PEI 2017-2023

Se definen como Ejes Estratégicos prioritarios de la agenda universitaria:

- 1 Inclusión educativa con calidad para todos los/las estudiantes de la universidad pública.
- 2 Actualización y flexibilidad del currículo en la enseñanza de grado y posgrado.
- 3 Producción de conocimiento científico, técnico y artístico con alto nivel y sentido social.

PEExa 2019-2023

Define como objetivos de la enseñanza de grado:

- La actualización curricular.
- 2 Sostenimiento y fortalecimiento de la formación integral.
- Orientación de los procesos de enseñanza y de aprendizaje hacia el conocimiento de la realidad local, nacional e internacional.
- 4 Fortalecimiento de modalidades de enseñanza con TICs.
- 5 Mejoramiento de las prácticas y formación docente.

Por otra parte, los objetivos de este plan de estudios están en correspondencia con:

Prioridades de Investigación de la UNRC

Definidas en la Resolución CS-UNRC 302/2018. En ella se consignan las áreas y temas de interés, en particular las áreas 8 de Matemática y Computación.

Líneas curriculares para la UNRC

Descriptas en las Resoluciones CS-UNRC 297/2017 y 008/2021.

3.4 Antecedentes

3.4.1 Breve reseña del origen y trayectoria de la carrera, considerando los ámbitos nacional, regional e institucional.

La enseñanza de la matemática en territorio argentino se remonta a la época colonial. Instaurado el primer gobierno patrio, Manuel Belgrano fue un impulsor del estudio de las ciencias con la creación de la Escuela de Matemáticas el 12 de septiembre de 1810 (ver [238]).

Una de las primeras menciones que hemos hallado de una carrera denominada Licenciatura en Matemática es en [183] donde se menciona que en 1926 se creó una Licenciatura y un Doctorado en Matemática y en Física dentro de una Facultad de Ingeniería.

Posteriormente el estudio de la matemática superior se ha diseminado por todo el sistema de educación superior argentino, siendo una de las carreras con más larga trayectoria en el país. En la actualidad la carrera de Licenciatura en Matemática se ofrece en las siguientes universidades nacionales: UNRC, UNAB, UNSL, UNC, UNLPam, UNNE, UNICEN, UNL, UNCOMA, UNMDP, UNSJB, UNS, UNSE, UNR y UBA.

En la UNRC la carrera de Lic. en Matemática fue creada desde el origen de la universidad. Su primer plan de estudios fue aprobado por Resolución Ministerial N° 1560/80 en el año 1975.

"2024 - AÑO DE LA DEFENSA DE LA VIDA, LA LIBERTAD Y LA PROPIEDAD"

Consistió en una carrera de 5 años de duración. Posteriormente el plan fue modificado en 1993. 2001 y 2008. El plan de 1993 incorporó como una de sus características centrales la elaboración de un trabajo final. Además, se introdujeron cambios en pos de articular con las carreras de computación recientemente creadas. En el plan de 2001 se revierten en parte los cambios anteriores, separando algunas materias respecto a las correspondientes de las carreras de computación y se introducen cambios en las áreas de geometría y estadística. El plan de 2008 llevó a la carrera a 4 años. Entre los aspectos centrales contenidos en este plan citamos que se hizo explícito el objetivo de incorporar la formación interdisciplinaria. La implementación del mismo obedeció en parte a recomendaciones elaboradas por la Unión Matemática Argentina en su documento [253]. Fue aprobado por Resolución del CD-FCEFQyN Nº 258 /07, ratificada por Resolución del CS-UNRC Nº 289/07. Registro y toma de conocimiento por parte de la Dirección Nacional de Gestión Universitaria informado por nota Nº 544/08. Introducción de modificaciones, que generaron la versión 1 del Plan de Estudios, aprobadas por resolución del CD-FCEFQyN Nº 156/08, ratificada por resolución del CS-UNRC Nº 212/08. Nueva introducción de modificaciones, que generaron la versión 2 aprobada por Resolución del CD-FCEFQyN N° 340/17, por la cual se aprueba el Texto Ordenado del Plan de Estudios 2008. Versión 2, de la Carrera de "Licenciatura en Matemática", según consta en el Anexo 1 de la citada Resolución, obrante a fojas 180/216 del Expediente N° 88664. Resolución del CS-UNRC N° 443/17, por la cual se ratifica la Resolución CD-FCEFQyN N° 340/17.

3.4.2 Actividades de docencia, investigación o extensión realizadas por la universidad vinculadas al proyecto.

Docencia

Como se mencionó, hay una larga trayectoria de la FCEFQyN en el dictado de carreras de grado y posgrado vinculadas con la matemática, particularmente la Licenciatura en Matemática, el Profesorado en Matemática, Maestría en Matemática Aplicada y Especialidad en Didáctica de la Matemática. Además de estos antecedentes, merece mencionarse que diversas carreras de nuestra y de otras facultades requieren el dictado de materias vinculadas con la matemática y por tanto es necesario la formación de docentes altamente calificados en esta disciplina. Nuestros egresados/as forman parte de los departamentos de matemática de otras facultades de la UNRC.

Investigación

Dentro del DM se ejecutan regularmente proyectos financiados tanto por SECyT-UNRC como por organismos de financiamiento de actividades científicas de orden nacional como ANPCyT y CONICET. Investigadores/as y becarios/as del CONICET desarrollan sus actividades en la mencionada unidad académica. Se participa de proyectos y grupos interdisciplinarios, por ejemplo, en facultades de ingeniería, miembros del departamento forman parte del Instituto de Investigaciones Sociales, Territoriales y Educativas. Por otra parte, se desarrollan actividades de investigación que requieren fuertemente el uso de la matemática en otras facultades de nuestra universidad, por ejemplo, en las Facultades de Ciencias Económicas (FCE) e Ingeniería (FI).

3.4.3 Experiencias similares realizadas a nivel nacional o internacional que hubieran sido tenidas en cuenta.

En la elaboración de este plan de estudios se tuvieron en cuenta las siguientes experiencias y antecedentes.

Unión Matemática Argentina

Es la asociación que agrupa a los matemáticos del país. La UMA convocó a matemáticos de reconocida trayectoria a nivel internacional, quienes elaboraron un documento (ver [253]) dando cuenta de sugerencias curriculares para la carrera de Licenciatura en Matemática.

Foro UMA-CUCEN

En el marco de las reuniones periódicas del Consejo Universitario Ciencias Exactas y Naturales (CUCEN) se realizó durante los años 2017-2018 un foro donde se debatieron ciclos de formación con el propósito de favorecer la movilidad de los/las estudiantes entre carreras de Licenciatura en Matemática del país. La CCP de la Lic. en Matemática participó activamente de este foro. Es de destacar que fruto de esta participación, y como parte del proyecto PIIMEI, se hizo una comparativa entre los distintos planes, más específicamente se definieron distintos nudos conceptuales y se identificaron las carreras de Licenciatura en Matemática de Argentina que trabajan dichos nudos (ver [155]).

Sistema Nacional de Reconocimiento Académico (SNRA)

Fue creado por la Resolución Ministerial N° 1870/16. Es un sistema voluntario de acuerdos entre instituciones de Educación Superior de la Argentina, que permite el reconocimiento de trayectos formativos (tramos curriculares, ciclos, prácticas, asignaturas, materias u otras experiencias formativas) para que los/las estudiantes transiten por el sistema aprovechando toda su diversidad y profundizando la experiencia de formación.

En el marco del SNRA el Ministerio de Educación convocó a especialistas de todo el sistema de educación superior, incluido docentes de la Licenciatura en Matemática de la UNRC, para que definan trayectos formativos con el propósito de facilitar la movilidad estudiantil dentro del sistema de educación superior nacional.

Fruto de la participación antes aludida nuestra universidad suscribió convenios de reconocimiento de trayectos académicos dentro del área matemática. Este plan de estudio refleja los acuerdos expresados dentro de estos convenios.

Proyecto Tuning

Tuning (ver [260]) es una red de comunidades de aprendizaje de alcance internacional, integrada por académicos y estudiantes interconectados, que reflexiona, debate, elabora instrumentos y comparte resultados. Siguiendo a [187], "Tuning es una metodología con pasos bien diseñados, y una perspectiva dinámica que permite la adaptación a los diferentes contextos. La metodología tiene un objetivo claro: construir titulaciones compatibles,

comparables, relevantes para la sociedad y con niveles de calidad y excelencia, preservando la valiosa diversidad que viene de las tradiciones de cada uno de los países."

Para el diseño de la presente propuesta curricular se tuvo en consideración el documento [187] que estudia perfiles del egresado y escenarios de futuro para el Área de Matemática y la profesión y estrategias de enseñanza, aprendizaje y evaluación de las competencias propias de los profesionales del área.

Competencias matemáticas para la industria

Es una preocupación permanente en el diseño del plan de estudios de la Licenciatura en Matemática, tanto en esta institución como otras, la inserción del/de la egresado/a en ámbitos no académicos. Generalmente en la bibliografía se refiere a estos ámbitos como la "industria" y se contempla que estos incluyen organismos públicos, empresas informáticas, etc. Diversas organizaciones se han encargado de identificar aquellas competencias que son requeridas en industrias a profesionales y que pueden ser provistas por egresados del área de las matemáticas y han propuesto estrategias pedagógicas para la consecución de estas competencias. Hemos estudiado los siguientes antecedentes en esta materia.

La Society for Industrial and Applied Mathematics (SIAM) es una asociación académica dedicada al uso de las matemáticas en la industria que tiene conexiones con la Asociación Argentina de Matemática Aplicada Computacional e Industrial (ASAMACI). La SIAM publicó varios documentos sobre la problemática del matemático en la industria, en particular [226,227].

La Comisión Internacional de Instrucción Matemática (ICMI) es una comisión de la Unión Internacional de Matemáticas (IMU) y es una organización de actuación internacional centrada en la educación matemática. La ICMI publicó las Educational Interfaces between Mathematics and Industry (ver [66]) entre otros materiales dirigidos a la temática en cuestión.

3.4.4 Población destinataria

La población destinataria de la carrera es la definida por la Resolución CS-UNRC 120/2017 (o sus posibles modificaciones) que aprobó el "Régimen de estudiantes y de enseñanza de pregrado y grado de la UNRC". En el punto 2 del Anexo I de la mencionada normativa se establecen las condiciones para que un/una estudiante ingrese a una carrera de grado dentro del ámbito de la UNRC.

3.4.5 Rasgos y características de la población estudiantil.

De acuerdo al Informe de Autoevaluación Institucional de UNRC del año 2019¹, en 2017 la población de estudiantes efectivos de UNRC está compuesta mayoritariamente por mujeres (más del 60 por ciento) y por menores de 25 años (60 por ciento). La gran mayoría (arriba del 80 por ciento) provienen de la provincia de

_

¹ https://www.unrc.edu.ar/descargar/informe-autoevaluacion.pdf

Córdoba y en un radio de 100 km de la ciudad de Río Cuarto se concentra cerca del 50 por ciento de los hogares de origen de los/las estudiantes, advirtiendo la relevante inserción regional de la UNRC. Un tercio de los/las estudiantes efectivos trabaja, como empleado de comercio mayoritariamente. Un alto porcentaje pertenece a los denominados "estudiantes primera generación con estudios superiores" (EPG), dado que el 80 por ciento de los/las estudiantes pertenecen a familias en las cuales ambos padres no han accedido al nivel superior educativo. De este modo la UNRC posibilita la inclusión educativa. Según los anuarios del "Programa de Estadísticas Académicas Exactas" de la FCEFQyN (PEAE)² entre los años 2017 y 2019, del perfil de los/las estudiantes ingresantes a la FCEFQyN podemos mencionar que en promedio (3 años) un 86 por ciento proviene de la provincia de Córdoba, el 27 por ciento trabaja, la mitad proviene de escuelas públicas, y el 75 por ciento son EPG.

4. Objetivos del proyecto

Formar un egresado/a:

- 1 Con capacidad crítica y autocrítica.
- 2 Respetuoso de los valores democráticos y de la diversidad cultural.
- 3 Con un alto conocimiento técnico en la disciplina.
- 4 Capacitado en la aplicación de la matemática en la resolución de problemas científicos y/o tecnológicos.
- 5 Que pueda acceder a carreras de posgrado, nacionales y del extranjero.
- 6 Capaz de integrarse en grupos de trabajo interdisciplinarios.
- 7 Capaz de plantear y resolver problemas de matemática pura.
- 8 Capaz de realizar actividades de investigación.

5. Características de la carrera

5.1 Nivel

Carrera de grado.

5.2 Acreditación

Licenciado/a en Matemática.

-

² https://www.exa.unrc.edu.ar/wp-content/uploads/2021/05/ anuario-academico-2019.pptx.pdf

5.3 Alcance del título

Esta carrera habilita para:

- 1 Participar en equipos interdisciplinarios que utilicen la matemática.
- 2 Realizar actividades de investigación en proyectos de matemática pura o aplicada.
- 3 Intervenir como peritos matemáticos en organismos públicos o privados.
- 4 Acceder a carreras de posgrado y a becas para realizar estudios de posgrado.
- 5 Participar de los equipos docentes dirigidos a la enseñanza de la matemática en los niveles superiores de enseñanza.

5.4 Actividades profesionales reservadas al título (Incumbencias)

El título no tiene actividades reservadas asociadas.

5.5 Perfil del Título

5.5.1 Conocimientos que constituyen el fundamento teórico-metodológico de su accionar profesional o académico.

Se aspira a que el/la Lic. en Matemática adquiera un conocimiento sólido en las siguientes áreas de la matemática: Análisis Matemático, Funciones de una Variable Compleja, Teoría de la Medida, Probabilidades, Estadística, Ciencia de Datos, Geometría Diferencial, Álgebra Lineal, Estructuras Algebraicas, Ecuaciones Diferenciales Ordinarias y Parciales, Cálculo Numérico y Análisis Funcional.

Se pretende además que el/la estudiante adquiera conceptos básicos de programación, física y en alguna materia de otra ciencia, por ejemplo biología, economía, química, ingeniería, informática. Para esto último se prevé una asignatura electiva.

Por otro lado, se aspira a que el/la estudiante logre una formación complementaria en un área de su elección dentro de la oferta de que disponga como parte de su ciclo de especialización.

5.5.2 Capacidades y habilidades requeridas para la realización de las actividades que le incumben.

Se espera lograr un profesional capacitado para:

- 1 Actuar con responsabilidad social y compromiso ciudadano.
- 2 Aprender, actualizarse y trabajar de manera autónoma.
- 3 Realizar análisis críticos y autocríticos.
- 4 Plantear y resolver problemas de matemática pura.
- 5 Idear demostraciones.

- 6 Valorar y respetar la diversidad y la multiculturalidad.
- 7 Construir y desarrollar argumentaciones lógicas con una identificación clara de hipótesis y conclusiones.
- 8 Extraer de una situación los rasgos más relevantes (Capacidad de abstracción).
- 9 Formular problemas en lenguaje matemático.
- 10 Iniciar investigaciones matemáticas bajo la orientación de expertos.
- 11 Contribuir en la construcción de modelos matemáticos a partir de situaciones reales.
- 12 Utilizar las herramientas computacionales de cálculo numérico y simbólico para plantear y resolver problemas.
- 13 Analizar grandes conjuntos de datos.
- 14 Expresarse correctamente utilizando el lenguaje de la matemática.
- 15 Comunicarse con otros profesionales no matemáticos.
- 16 Actuar en contextos educativos y planificar actividades de enseñanza.
- 17 Leer, escribir y exponer documentos en inglés, así como comunicarse con otros especialistas en este idioma.
- 18 Trabajar en equipos interdisciplinarios.
- 19 Trabajar en contextos internacionales.
- 20 Comprender otras formas de validación del conocimiento (método empírico).

5.6 Requisitos de ingreso

Los requisitos para el ingreso a la carrera de Licenciatura en Matemática son los establecidos en el artículo 7o de la Ley de Educación Superior o de sus eventuales modificatorias. Los aspirantes deberán haber aprobado el nivel de enseñanza secundaria. Excepcionalmente, los mayores de veinticinco años que no reúnan esta condición podrán ingresar siempre que demuestren a través de una evaluación que establezca nuestra Universidad, que tienen preparación y/o experiencia laboral acorde a los estudios que se proponen iniciar, así como conocimientos y actitudes para cursarlos satisfactoriamente.

Los aspirantes deberán además cumplir con las exigencias que establezcan las normativas específicas de la UNRC y de la FCEFQyN vigentes en el momento de la inscripción.

5.7 Organización del Plan de Estudios

5.7.1 Ciclos, Trayectos y Áreas

El Plan de Estudios se desarrollará en tres ciclos: un ciclo básico común con el profesorado en Matemática, un ciclo superior y un ciclo de especialización.

Ciclo Básico

El ciclo básico incluye 15 asignaturas.

Asignaturas del ciclo básico	Código	Horas semanales	Horas totales
Introducción al Cálculo	2282	8	112
Introducción al Álgebra	2283	8	112
Geometría Euclídea	2284	6	84
Análisis Matemático I	2285	8	112
Álgebra Lineal	2286	8	112
Geometría Analítica	2287	6	84
Análisis Matemático II	2288	8	112
Taller de Informática	1927	6	84
Inglés I	3402	4	56
Inglés II	3403	4	56
Probabilidades	1987	8	112
Estructuras Algebraicas	1993	8	112
Estadística	1991	6	84
Física	1930	6	84
Sociología de la Educación	2064	4	56
Total de horas ciclo básico			1372

Ciclo Superior

Consta de 12 materias obligatorias.

Asignaturas del ciclo superior	Código	Horas semanales	Horas totales
Álgebra Lineal Aplicada	2261	8	112
Fundamentos de Análisis	2289	8	112
Cálculo Numérico Computacional	2030	8	112
Variables Complejas	1911	8	112

Topología	1917	8	112
Medida e Integración	2263	10	140
Ecuaciones Diferenciales	1913	8	112
Geometría Diferencial	1915	8	112
Modelos de Regresión y Métodos Empíricos	2290	8	112
Análisis Funcional	1916	8	112
Introducción a las Ecuaciones en Derivadas Parciales	2212	8	112
Matemática y Sociedad	2291	4	56
Total de horas ciclo superior			1316

Ciclo de Especialización

Dirigido a introducir al/a la estudiante en la investigación en una rama específica de la matemática de su elección o a introducirlo en la aplicación de la matemática a un problema de modelización o a un problema de origen tecnológico, social, productivo, etc.

Consta de dos asignaturas optativas, una electiva y contempla la realización de un trabajo final. La realización del trabajo final está regulado por la reglamentación de la FCEFQyN vigente en el momento de su realización.

Asignaturas del ciclo de especialización	Código	Horas semanales	Horas totales
Optativa I		10	140
Electiva		6	84
Optativa II		10	140
Trabajo Final	2038	10	140
Total de horas ciclo de especialización			504

5.7.2 Listado total de asignaturas

Primer año				
Cuat.	Código	Materia	hr. sem.	hr. Tot.
1	2282	Introducción al Cálculo	8	112
1	2283	Introducción al Álgebra	8	112
I	2284	Geometría Euclídea	6	84

Universidad Nacional de Río Cuarto Facultad de Ciencias Exactas, Físico-Químicas y Naturales

Total de Ho	ras cuatrimes	etre I	22	308
II	2285	Análisis Matemático I	8	112
II	2286	Álgebra Lineal	8	112
II	2287	Geometría Analítica	6	84
Total de Ho	ras cuatrimes	tre II	22	308
		Segundo año		
Ш	2288	Análisis Matemático II	8	112
Ш	1927	Taller de Informática	6	84
Ш	3402	Inglés I	4	56
Ш	2261	Álgebra Lineal Aplicada	8	112
Total de Ho	ras cuatrimes	stre III	26	364
IV	1987	Probabilidades	8	112
IV	1993	Estructuras Algebraicas	8	112
IV	3403	Inglés II	4	56
Total de Ho	ras cuatrimes	stre IV	20	280
		Tercer año		
V	1991	Estadística	6	84
V	2289	Fundamentos de Análisis	8	112
V	2030	Cálculo Numérico Computacional	8	112
	ras cuatrimes		22	308
VI	1930	Física	6	84
VI	1911	Variables Complejas	8	112
VI	1917	Topología	8	112
Total de Ho	ras cuatrimes		22	308
		Cuarto año	<u> </u>	
VII	2263	Medida e Integración	10	140
VII	1913	Ecuaciones Diferenciales	8	112
VII	2064	Sociología de la Educación	4	56
	ras cuatrimes		22	308
VIII	1915	Geometría Diferencial	8	112
VIII	2290	Modelos de Regresión y Métodos Empíricos	8	112
VIII	2212	Introducción a las Ecuaciones en Derivadas Parciales	8	112
Total de Ho	ras cuatrimes		24	336
IV	1016	Quinto año		110
IX	1916	Análisis Funcional	8	112
IX		Optativa I	10	140
IX Total de He	ras cuatrimes	Electiva	6 22	84 336
X	2291	·	4	56
X	2291	Matemática y Sociedad Optativa II	10	140
X	2038	Trabajo Final	10	140
	ras cuatrimes	·	20	336
		lares (ver 5.7.6)	20	60
Total de Horas del Plan de estudios 3252				3 2 32

Asignaturas optativas propuestas

- Introducción a la Teoría de Aproximación (2278)
- Aproximación Simultánea en Espacios Normados (2269)
- Espacios de Funciones Invariantes por Reordenamiento
- Espacios de Orlicz e Interpolación
- Sistemas Dinámicos (2267)
- Cálculo de Variaciones (2280)
- Métodos Matemáticos de la Mecánica
- Inecuaciones Variacionales Elípticas (2279)
- Problemas de Frontera Libre.
- Introducción a la Didáctica de la Matemática
- Desarrollos actuales de la Didáctica de la Matemática
- Epistemología de la Matemática
- Inferencia Estadística.
- Modelos Lineales
- Análisis Multivariado.
- Estadística computacional.
- Procesos Estocásticos.
- Grupos y Álgebras de Lie (3368)
- Variedades Diferenciables y Riemannianas (2277)
- Introducción a la Teoría de Inversas Generalizadas Matriciales
- Una Introducción a Órdenes Parciales Matriciales
- Inversas Generalizadas de Operadores en Espacios de Hilbert

5.7.3 Contenidos y metodología

Contenidos

Ciclo Básico

1. **Introducción al Cálculo (2282):** Números reales. Expresiones decimales de los números reales. Sucesiones. Series. Límites de sucesiones. La modelización algebraica funcional. Función. Definición. Distintas representaciones: Limitaciones y potencialidades. Clasificación. Funciones elementales, polinómicas y trascendentes. Operaciones.

Composición. Inversa. Clasificación. Continuidad y límites de funciones. Propiedades de las funciones continuas sobre intervalos cerrados y acotados.

Bibliografía: [152,237,245]

Bibliografía orientada según la historia: [103,7,247,34,37,35].

2. Introducción al Álgebra (2283): Introducción a la lógica y a la teoría de conjuntos. Relaciones, operaciones, funciones. El conjunto de los números naturales (N). Propiedades de las operaciones. El principio de inducción matemática como método de demostración en el conjunto de los números naturales. Necesidad de ampliación del conjunto N: números enteros. Propiedades de las operaciones. Divisibilidad en Z. Algoritmo de la división entera. Teorema fundamental de la aritmética. MCD y MCM. Congruencia. Necesidad de ampliación del conjunto de los números reales: números complejos. Diferentes representaciones. Polinomios. Operaciones. Raíces de un polinomio. Teorema fundamental del álgebra. Relaciones de orden y de equivalencia.

Bibliografía: [149,100,131,208].

Geometría Euclídea (2284): Axiomas de Euclides. Congruencia de Triángulos. 3. Cuadriláteros, polígonos, propiedades. Teorema de Thales. Semejanza de triángulos. Circunferencia, propiedades. Elementos notables en el triángulo, propiedades. Posiciones relativas de circunferencias y rectas en el plano. Inversión respecto a una circunferencia. Área figuras. Cuerpos. propiedades. Volumen. Las presentaciones axiomático-deductivas de la geometría, estatus, potencialidades, limitaciones. Articulación geometría sintética-geometría analítica.

Bibliografía : [20,82,105,195].

Bibliografía de Consulta: [30,181,20,258,60,61,106,130,123,259].

4. **Análisis Matemático I (2285):** Derivadas. Problemas que le dan sentido: de la recta tangente, de la velocidad. Otras razones de cambio. Aplicaciones de la derivada. Teorema del valor medio. Integral definida en una variable. Problemas que le dan sentido: del área, de la distancia. Teorema fundamental del cálculo. Aplicaciones de la integral. Métodos de integración. Integrales impropias. Series numéricas. Series de potencia. Series y polinomios de Taylor. Introducción a las ecuaciones diferenciales de primer orden.

Bibliografía: [152,237,245,229,245].

Bibliografía Consulta: [103,7,247,34,37,35].

5. **Álgebra Lineal (2286):** Sistemas de ecuaciones lineales. Álgebra vectorial y matricial. Espacios vectoriales. Transformaciones lineales y matrices. Teorema de la dimensión.

Rango de una matriz. Espacio dual. Espacio Euclídeo. Bases ortonormales. Autovalores y autovectores. Diagonalización.

Bibliografía: [115,240].

6. **Geometría Analítica (2287):** Vectores. Producto escalar y vectorial. Ecuaciones de la recta y el plano. Posiciones relativas de rectas y planos en el espacio. Ángulos y distancias entre rectas y planos. Resolución de problemas de geometría euclidiana con herramientas de la geometría analítica. Transformaciones rígidas. Homotecias. Transformaciones afines. Cónicas. Ecuación general de segundo grado y su reducción por transformaciones rígidas o afines. Reflexión respecto de elipses y parábolas. Cuádricas.

Bibliografía: [60,32,12,82,104,94,123,5,2]

7. **Análisis Matemático II (2288):** Funciones vectoriales. Derivadas. Longitud de arco. Funciones de varias variables. Derivadas parciales. Regla de la cadena. Derivadas direccionales. Extremos y extremos condicionales. Integración múltiple. Análisis vectorial. Integrales de línea y de superficie. Teoremas de Green, Gauss y Stokes.

Bibliografía: [165,93,103,153,246].

8. **Taller de Informática (1927):** Noción de algoritmo. Su formulación en pseudocódigos. Estructuras de datos y de control. Implementación en lenguaje computacional.

Bibliografía: [222,206].

- Inglés I (3402): Aproximación a la lectura de géneros textuales disciplinares en inglés. Estructura retórica y características lingüísticas propias de los diferentes géneros. Uso de bibliotecas virtuales y otros recursos online para la búsqueda y selección autónoma de textos disciplinares en inglés.
- 10. Inglés II (3403): Lectura de géneros científicos disciplinares en inglés. El artículo de divulgación científica como herramienta de acceso al artículo de investigación. El resumen (abstract) y el artículo de investigación. Estructura retórica y características lingüísticas propias de estos géneros. Escritura de síntesis en español a partir de la lectura de fuentes diversas sobre una misma temática en inglés.
- 11. Álgebra Lineal Aplicada (2261): Normas matriciales. Método de Gram-Schmidt. Descomposición QR. Matrices unitarias y ortogonales. Reducción ortogonal. Descomposición SVD. Diagonalización. Matrices normales y simétricas. Matrices definidas positivas. Matrices nilpotentes y formas de Jordan.

Bibliografía: [99,115,169,240]

Probabilidades (1987): Espacios de probabilidad. Definiciones frecuencial y clásica. Probabilidad condicional e independencia. Teorema de Bayes. Variables aleatorias y sus distribuciones. Vectores aleatorios y transformaciones. Dependencia y distribuciones condicionales. Función generatriz de momentos y sus aplicaciones. Convergencia de sucesiones de variables aleatorias. Ley débil y ley fuerte de los grandes números. Teorema central del límite.

Bibliografía: [22,70,188,209,101,168].

- 13. **Estructuras Algebraicas (1993):** Polinomios simétricos. Permutaciones. Grupos. Grupos simétricos. Grupos y subgrupos: problemas de construcción y de demostración. Método de conteo: Teorema de Lagrange. Relación entre grupos. Teorema de caracterización de grupos cíclicos. Imágenes homomorfas de un grupo. Subgrupos invariantes. Construcción de grupos cocientes. Teoremas de isomorfismos. Ecuación de clases. Teoremas de Sylow. Otras estructuras como modelos algebraicos: anillos, dominios de integridad, dominios principales, dominios de factorización única, cuerpos. Bibliografía: [74,179,111,151].
- 14. **Estadística (1991):** Estadística descriptiva. Variabilidad muestral, distribuciones de muestreo y sus aplicaciones. Estimación puntual. Intervalos y regiones de confianza. Pruebas de hipótesis. Pruebas de χ -cuadrado. Correlación y modelo de regresión lineal. Métodos empíricos.

Bibliografía: [265,70,121,26,174,129,250,168]

15. **Fundamentos de Análisis (2289):** Cardinalidad. Espacios métricos. Completitud. Conexión. Compacidad. Convergencia uniforme. M-test Weiertrass. Series de potencias y de Fourier. Convergencia uniforme de series de potencias y de Fourier. Convergencia uniforme de funciones y su relación con la continuidad, la derivada y la integral.

Bibliografía: [96,1,228,184,224,40,72,211,139,147,172]

16. **Cálculo Numérico Computacional (2030):** Sistemas de numeración. Teoría de errores. Solución de ecuaciones lineales y no-lineales. Aproximación e Interpolación de funciones. Integración numérica. Producto escalar discreto y continuo. Polinomios ortogonales y cuadrados mínimos. Implementación de los algoritmos numéricos en un lenguaje computacional. Solución numérica de ecuaciones diferenciales ordinarias.

Bibliografía: [43,141].

17. **Física (1930):** Mecánica. Dinámica de una partícula. Leyes de Newton. Concepto de masa. Energía cinética y potencial. Fuerzas de vínculo. Fuerza centrípeta. Fuerzas de rozamiento. Ley de gravitación universal. Ecuaciones de movimiento. Momentos. Fuerzas angulares. Trabajo y energía. Campos conservativos. Potencia. Cinemática y dinámica del cuerpo rígido. Momento de inercia. Teorema de Steiner. Sistemas no inerciales. Teoría de errores.

Bibliografía: [204,220].

18. **Variables Complejas (1911):** Funciones analíticas. Desarrollos en serie de potencias. Fórmula y teorema de Cauchy. Singularidades. Series de Laurent. Cálculo de residuos. Teorema del módulo máximo. Mapeo conforme.

Bibliografía: [4,50,55]

19. **Topología (1917):** Espacios topológicos. Funciones continuas. Subespacios, espacios producto y cociente. Axiomas de separación. Metrización. Conjuntos compactos y conexos. Espacios de funciones Teorema de Arzela-Ascoli. Teorema de Weiertrass. Topología Algebraica. Homotopía.

Bibliografía: [76,140,175,173,167,261,56,54].

20. **Medida e Integración (2263):** Medida de Lebesgue. Funciones medibles. Integral de Lebesgue. Lema de Fatou y Teorema de la Convergencia Mayorada. Teorema de Fubini. Medidas abstractas. Funciones de variación acotadas y absolutamente continuas. Espacios de Banach y de Hilbert. Espacios L^p . Espacio L^2 . Bases ortonormales. Desigualdad de Bessel e identidad de Parseval. Lemma de Riemann-Lebesgue. Completitud del sistema de funciones trigonométricas.

Bibliografía: [81,157,239,242,145,36,266].

21. **Ecuaciones Diferenciales (1913):** Herramientas computacionales. Métodos elementales de solución. Teorema de existencia y unicidad. Ecuaciones lineales de orden *n*. Teoremas de separación y comparación de Sturm. Método de Frobenius. Problemas de Sturm-Liouville. Funciones especiales de la física-matemática. Sistemas lineales.

Bibliografía: [229,31,113,235,162,186,25]

- 22. Sociología de la educación (2064): Observación, análisis y fundamentación de las relaciones concretas entre la educación formal, las demandas sociales y las decisiones del poder en la sociedad argentina actual y su contexto. Las dimensiones socio-político-económico-culturales determinantes de los procesos y las relaciones en el aula, la institución escolar y el sistema educativo. Análisis de los problemas más relevantes que presenta la educación argentina desde esta perspectiva, su articulación con las demandas sociales populares y las limitaciones desde la hegemonía. Reflexión prospectiva.
- 23. **Geometría Diferencial (1915):** Geometría de curvas y superficies. Geometría Riemanniana intrínseca. El Teorema de Gauss Bonnet. Aplicaciones a la física.

Bibliografía: [3,17,16,58,73,110,158,176,197,178]

24. **Modelos de Regresión y Métodos Empíricos (2290):** Regresión lineal y clasificación. Técnicas de remuestreo. Selección en modelos lineales y regularización: Ridge, Lasso, Elastic net, Grouped Lasso, Ensambles. Métodos basados en Árboles.

Bibliografía: [107,121,108,77].

25. Introducción a las Ecuaciones en Derivadas Parciales (2212): Principios de la mecánica del continuo. Teorema del transporte de Reynolds. Ecuación del balance de masas. Ley del balance de energía. Ley de conducción de Fourier. Ecuaciones de Navier-Stokes. Ecuación del calor. Ecuación del transporte lineal. Método de las características. Ondas viajeras. Ecuación del transporte no-lineal, homogénea y no-homogénea. Ondas de choque. Ecuación de ondas. Fórmula de d'Alembert. Solución en una semirrecta. Extremos fijos y libres. Problema de Cauchy en un intervalo acotado. Método de Fourier. Medias esféricas. Armónicos esféricos. Método de Fourier para una membrana vibrante circular. Ecuación de Schrödinger para el átomo de hidrógeno. Transformada de Fourier. Solución del Cauchy para la ecuación de ondas por medio de la transformada de Fourier. Solución fundamental de la ecuación del calor. Solución ecuación del calor en dominios circulares por el método de Fourier. Ecuación de Laplace y de Poisson. Propiedad del valor medio. Desigualdad de Harnack.

Bibliografía: [79,62,146,27,29,127,215,256,191,75,252].

26. Análisis Funcional (1916): Teoremas de Hahn-Banach. Principio de acotación uniforme. Teoremas de la aplicación abierta y del grafo cerrado. Topologías débiles. Teoremas de Banach-Alaoglu, Kakutani y Eberlein-Šmulian. Espacios separables. Espacios de Hilbert. Bases ortonormales. Teorema de Lax-Milgram. Operadores en espacios de Hilbert. Operadores compactos. Descomposición espectral de operadores compactos autoadjuntos.

Bibliografía: [38,71,52,57,267,210,59].

27. **Matemática y Sociedad (2291)** Los siguientes contenidos se proponen como tentativos. La materia consta de dos módulos:

Formación humanística. Derechos humanos, género, recursos naturales, acceso a la educación, estado y sociedad. Preferentemente a cargo de un invitado especialista en las temáticas.

Matemática para la justicia social. El problema del recuento de votos en democracia. Teorema de imposibilidad de Arrow. Modelos matemáticos de impacto social y ambiental de la agroindustria, del transporte de hidrocarburos, incendios forestales. Teoría de grafos aplicada al estudio del tráfico de personas. Matemática aplicada al estudio de la seguridad social. Problemas de elección (ejemplo, niños a escuelas). Modelizando la desigualdad en los ingresos (Coeficiente de Gini). Modelos matemáticos sobre la aceptación de la diversidad sexual.

Bibliografía: [41,135,134,42,180,264,116,207,136,203,132,213,212,241,263,177,51]

28. **Optativas:** Las asignaturas optativas, se eligen a partir de una nómina propuesta anualmente por Consejo Departamental de Matemática con el acuerdo de la Comisión Curricular Permanente, quienes a su vez establecen las correlatividades y son aprobadas por el Consejo Directivo de la Facultad. Los estudiantes, con acuerdo de la Comisión Curricular Permanente, podrán a su vez cursar asignaturas avanzadas de carreras afines pertenecientes a otras carreras de la Facultad o a otras universidades nacionales o internacionales, siempre que, que los contenidos mínimos y la intensidad de carga práctica respondan a los establecidos en el presente plan y exista un convenio con la Facultad o Universidad. Algunas de las posibles asignaturas optativas a ofrecer son:

Introducción a la Teoría de Aproximación (2278): Contenidos sugeridos: Existencia, unicidad y caracterización de mejores aproximantes desde subespacios en espacios normados. Aproximación por polinomios algebraicos. Mejor aproximación en espacios clásicos de Lebesgue. Algoritmos. Desigualdades polinomiales. Orden de aproximación. Bibliografía sugerida [46,159,192,117,196,202,230]

Aproximación Simultánea en Espacios Normados (2269): Contenidos sugeridos: Existencia, unicidad y caracterización de mejores aproximantes simultáneos desde subconjuntos convexos. Reducción de mejores aproximantes simultáneos a mejores aproximantes. Puntos extremales en espacios productos. Caracterización funcional de mejores aproximantes simultáneos Aplicaciones a los espacios: $C[a, b], L^1[0, 1]$ $L^p[0, 1], 1 . Bibliografía sugerida [8,11,137,156,193,120,53]$

Espacios de Funciones Invariantes por Reordenamiento: Contenidos sugeridos: Espacios de funciones de Banach. El espacio asociado. Espacios de funciones invariantes por reordenamiento. Funciones de distribución y reordenadas decrecientes. Espacios invariantes por reordenamiento. La función fundamental. Espacios de Lorentz, $L_1 + L_{\infty}$ y $L_1 \cap L_{\infty}$. Índices de Boyd. Espacios de Orlicz-Lorentz. Teoremas de interpolación clásicos. El Teorema de Riesz-Thorin y el Teorema de Marcinkiewicz. Los espacios de Lorentz-Zygmund, Llog(L) y Lexp. Bibliografía sugerida [19,170,119,223].

Espacios de Orlicz e Interpolación: Contenidos sugeridos: Espacios modulares. Ejemplos. Espacios de Orlicz y clases de Orlicz. Separabilidad. Existencia y no existencia de funcionales lineales continuos. Función complementaria y norma de Orlicz. Forma general de funcionales lineales continuos. El producto de funciones y el Teorema de Landau. Índices en espacios de Orlicz. Espacios de Orlicz generados por funciones de Young. Teorema de interpolación no lineal de Orlicz. Interpolación en espacios de Orlicz. Espacios de Calderón-Lozanovskii e interpolación de operadores. Bibliografía sugerida: [185,254,148,118,171]

Sistemas Dinámicos (2267): Flujo de una ecuación autónoma. Órbitas y conjuntos invariantes. Estabilidad en los equilibrios. Linearización. Variedades estables e inestables. Teorema de Hartman-Grobman. Método de Lyapunov. Estabilidad soluciones periódicas.

Sistemas autónomos planos. El Teorema de Poincare Bedixson. Horas: 135. Bibliografía sugerida: [23,244].

Cálculo de Variaciones (2280): Funciones de variación acotada y absolutamente continuas. Espacios de Sobolev. El método directo del cálculo de variaciones. Teorema de Krasnoselski. Teoremas de semicontinuidad y existencia de Tonelli. Ejemplos de no existencia de mínimos. Soluciones periódicas de sistemas Hamiltonianos. Horas: 154. Bibliografía sugerida: [166,44].

Métodos Matemáticos de la Mecánica: Principios generales de la mecánica. Sistemas inerciales. Leyes de movimiento de Newton para un sistema de partículas. Leyes de conservación. Fuerzas de vínculo. Desplazamientos virtuales. Principio de d'Alembert. Formulación Lagrangiana de la mecánica. Ejemplos. Movimiento del cuerpo rígido. Velocidad angular. Matriz de inercia. Momentos principales de inercia. Ecuaciones de Euler. Formulación Hamiltoniana de la mecánica. Bibliografía sugerida: [9,10].

Inecuaciones Variacionales Elípticas (2279): Inecuaciones Variacionales Elípticas en Espacios de Hilbert. Inecuaciones Variacional con Forma Bilineal, Continua, Coercitiva y Simétrica. Inecuación Variacional con Forma Bilineal, Continua, Coercitiva y No Simétrica. Aplicaciones. Minimización de Funcionales en Espacios de Banach reflexivos. Relaciones entre Inecuaciones Variacionales y Minimización de Funcionales. Problemas de Frontera Libre: Problema de la Pared Semipermeable, Problema del Obstáculo, Fluido Viscoplástico de Bingham, Problema de Stefan a dos fases. Análisis Numérico de inecuaciones variacionales Elípticas. Bibliografía sugerida: [78,142]

Problemas de Frontera Libre: Problemas de Frontera Fija, Móvil y Libre para la Ecuación del Calor Unidimensional. Problemas de Frontera Libre de tipo explícito e implícito. Los problemas de Stefan y de la Difusión-Consumo de Oxígeno. Soluciones Exactas de Lamé-Clapeyron y de Neumann, y sus Aplicaciones. Diferentes Métodos Teóricos y Aproximados para el estudio de la solución del problema de Stefan a una fase con condiciones de contorno de Temperatura o Flujo de calor en el borde fijo. Comportamiento asintótico de la Frontera Libre. El problema de Stefan a dos fases. Bibliografía sugerida: [112,243]

Introducción a la Didáctica de la Matemática: El objeto de la Didáctica de la Matemática. Distinción entre el Programa Cognitivo y el Programa Epistemológico. Supuestos básicos y problemas iniciales del Programa epistemológico. La Teoría de Situaciones Didácticas. [39,91,92,214]

Desarrollos actuales de la Didáctica de la Matemática: La Teoría Antropológica de lo didáctico. Enfoque ontosemiótico del conocimiento y la instrucción matemáticos. Educación matemática crítica. Bibliografía sugerida: [49,48,47,97,98,232,233].

Epistemología de la Matemática: La epistemología y su relación con la historia y la filosofía de la ciencia. La epistemología como estudio de los discursos científicos: la matemática y su especificidad. La naturaleza de los objetos y del método matemático. Las corrientes fundamentadoras clásicas: logicismo, formalismo, intuicionismo. Una

perspectiva alternativa: el análisis histórico-crítico de la geometría y el álgebra. Bibliografía sugerida: [143,14,90,190,194].

Inferencia Estadística: Estimación puntual. Métodos de estimación. Evaluación de Estimadores. Estimación por Intervalos. Test de Hipótesis. Referencias: [21,24,69,154,221,205,218].

Modelos Lineales: Modelos de regresión. Análisis de la varianza. Distribución de formas cuadráticas y lineales. Estimación e inferencia para modelos lineales. Referencias: [114,198,199,217,219,257,268].

Análisis Multivariado: Formas lineales y transformaciones de matrices de datos normales. Estimación puntual. Test de hipótesis. Análisis de regresión multivariado. Análisis de componentes principales. Análisis factorial. Análisis de correlación canónica. Análisis discriminante. Análisis de la varianza multivariado. Análisis de clusters. Escalamiento multidimensional. Datos direccionales. Referencias: [6,80,102,124,63,164,189,128,201].

Estadística computacional: Optimización continua y combinatoria. Algoritmos de ascensos por coordenadas. Simulated annealing. Algoritmo EM. Simulación. Cadena de Markov Monte Carlo. Algoritmo Metropolis Hastings. Muestreo de Gibbs. Bootstrap. Bootstrap robusto. Referencias: [269,270,95]

Procesos Estocásticos: Teorema de extensión de medidas de Kolmogorov. Construcción de procesos a partir de las distribuciones finito-dimensionales. Teorema de clase $\pi-\lambda$. Esperanza condicional. Martingalas a tiempo discreto. Desigualdades fundamentales. Teoremas de convergencia. Cadenas de Markov en espacio de estados discretos. Clasificación de estados. Medidas invariantes. Teoría ergódica. Transformaciones que preservan medida. Teorema ergódico. Referencias: [33,89,225,255].

Grupos y Álgebras de Lie (3368): Grupos de Lie. Álgebras de Lie. La Representación Adjunta. Forma de Killing. Álgebras de Lie nilpotentes y solubles. Horas: 126. Bibliografía sugerida: [28,109,251,144,122,18].

Variedades Diferenciables y Riemannianas (2277): Variedades diferenciables. Variedades Riemannianas. Tensor de curvatura. Horas: 144. Bibliografía: [28,160,45,109,182,251,15]

Introducción a la Teoría de Inversas Generalizadas Matriciales: Descomposiciones matriciales. Teorema espectral. Proyectores ortogonales. Inversas generalizadas clásicas y sus variantes más recientes. Existencia, unicidad, caracterizaciones y representaciones matriciales. Bibliografía sugerida: [234,88,231,248,249,85,87,86,84,216,133,161,262].

Una Introducción a Órdenes Parciales Matriciales: Pre-órdenes y órdenes parciales matriciales clásicos inducidos por inversas generalizadas. Órdenes parciales sobre conjuntos especiales de matrices. Teoremas del tipo Fisher-Cochran. Nuevas relaciones binarias e inversas generalizadas. Proyector espectral asociado al autovalor propio nulo de matrices EP. Bibliografía sugerida: [248,126,125,13,67,68,83,200,236,150,163,231]

Inversas Generalizadas de Operadores en Espacios de Hilbert: Operadores de rango cerrado. Subespacios complementarios. Operadores regulares. La inversa de

"2024 - AÑO DE LA DEFENSA DE LA VIDA, LA LIBERTAD Y LA PROPIEDAD"

Moore-Penrose de operadores. Propiedades minimales. Proyectores ortogonales. Operadores Drazin invertibles en espacios de Hilbert. Existencia, unicidad y caracterización. Representaciones matriciales en bloques del tipo 2x2 de operadores. Operadores normales con rango cerrado. Operadores EP. Ecuaciones de operadores del tipo AXB = C y A * X + X * A = B. Bibliografía sugerida: [64,65,138,88,83].

- 29. **Electiva:** Pueden asumir cualquier formato curricular y modalidad de cursado, ofrecidos por la UNRC u otras universidades, siempre que medie un convenio entre las mismas, con el objetivo que los/las estudiantes profundicen una línea específica de su área de formación (Electivas Profesionales), complemente su formación profesional (Afines Profesionales) o que brinde conocimientos relacionados con disciplinas que pueden no pertenecer a la carrera elegida (de Formación General).
- 30. **Trabajo Final (2038):** El trabajo final se elaborará a partir de alguna/s de las siguientes alternativas:
 - · un trabajo de investigación realizado por el/la estudiante,
 - un trabajo de síntesis de artículos de investigación publicados en revistas de reconocido prestigio,
 - una experiencia de aplicación de la matemática.

El/la estudiante realizará una monografía que a posteriori defenderá oralmente siguiendo las normas establecidas por la FCEFQyN.

Metodología

Actividades asignaturas de matemática

Clases Expositivas. Se expondrán los conocimientos que constituyen el fundamento teórico de las distintas materias. Se promoverá la participación y el análisis crítico de los conocimientos impartidos, de modo tal de desarrollar en el estudiante su habilidad en transmitir ideas en lenguaje matemático y de construir y desarrollar argumentaciones lógicas con una identificación clara de hipótesis y conclusiones.

Clases de problemas. En estas clases el/la estudiante es expuesto a situaciones problemáticas en el contexto de los conocimientos propios de la materia o de su aplicación a otro contexto. Se procurará que el/la estudiante desarrolle estrategias de resolución de problemas de manera autónoma, que adquiera dominio del lenguaje de la matemática y del proceso de validación del conocimiento en esta ciencia.

Clases de laboratorio de computación. En algunas materias, particularmente en Taller de informática, Cálculo Numérico Computacional, Ecuaciones Diferencia, Modelos de Regresión y Métodos Empíricos e Introducción a las Ecuaciones en Derivadas Parciales, se destinarán horarios de práctica con computadora donde el estudiante deberá desarrollar programas que resuelvan problemas computacionales que se le presente. Se estimulará que el estudiante adquiera habilidades para analizar grandes conjuntos de datos, contribuir en la construcción de

modelos matemáticos a partir de situaciones reales, utilizar las herramientas computacionales de cálculo numérico y simbólico para resolver problemas. Se espera conseguir destreza en el manejo de algunos lenguajes: m (Octave-Matlab), R, Latex y Python.

Lectura y Escritura. Con el fin de «Promover la enseñanza y el aprendizaje de prácticas de lectura y escritura crítica...que potencien competencias comunicativas y cognitivas para el desempeño de diversas prácticas universitarias.»³ se incorporará como estrategia de enseñanza de las distintas materias la lectura (individual o grupal) de materiales teóricos y su posterior comunicación (oral o escrita). Se propenderá a la incorporación de prácticas de enseñanza exitosas en el terreno de la lectura y escritura desarrolladas en la UNRC [271] y a la participación de programas y proyectos destinados a estos fines (PELPA). Paralelamente, la lectura de materiales en otras lenguas, particularmente inglesa, consolidará la capacidad de los estudiantes para leer y comprender textos en idioma extranjero.

Cursos online y webinars. Con el propósito de fortalecer la participación en procesos de internacionalización de la educación⁴ se incorporara en algunas asignaturas como actividad complementaria el uso de materiales escritos y/o audiovisuales producidos por centros de reconocido prestigio para las materias que se desarrollan en ellos. Por ejemplo, las plataformas EDX⁵, OCW-MIT⁶ y Springer-Math⁷ comparten cursos de diversas instituciones, Massachusetts Institute of Technology y Harvard University entre ellas, y ofrece, en muchos casos de manera libre, los materiales de estos cursos, incluídas videoclases. Estas actividades contribuirán a mejorar la capacidad del estudiante de leer, escribir y comunicarse con otros especialistas en idioma inglés.

Disertantes invitados. Se alentará la participación en las materias de disertantes invitados. Estas exposiciones pueden tener carácter presencial o virtual.

Trabajo Final. Con la asistencia de su tutor el/la estudiante deberá leer los antecedentes bibliográficos que están directamente relacionados con el tema de su trabajo. Se procurará que esta bibliografía incluya artículos de investigación en revistas de reconocido prestigio, de modo tal de contribuir a la capacidad del estudiante para aprender, actualizarse y trabajar de manera autónoma y además comprender las formas de transmitir conocimientos nuevos en las ciencias. Luego el/la estudiante redactará la monografía, la cual puede contener resultados teóricos ya conocidos o se pueden presentar resultados originales.

Prácticas Socio-comunitarias. De acuerdo con la Res. CS N° 322/2009 las mismas tienen el objeto de "construir y afianzar un currículo que coadyuve a la creación de conciencia social y ciudadana, en el marco de una función crítica de la Universidad". Se prevé la inclusión de prácticas socio-comunitarias dentro de las asignaturas del ciclo superior de la carrera.

³ Convocatoria VI PELPA, UNRC

⁴ Plan estratégido 2019 FECFQyN

⁵ https://www.edx.org/es

⁶ https://ocw.mit.edu/

https://cassyni.com/c/springer-math

Asignatura Física (1930)

Comprende clases teóricas, clases prácticas de resolución de problemas y clases prácticas de laboratorio. Se destinará la misma carga horaria para cada una de estas clases. Los contenidos de la asignatura están referidos a conocimientos básicos y generales sobre las Leyes y Teorías más elementales de la Física, como también un abordaje especial sobre su metodología. Se pretende con ello proporcionar al futuro graduado el soporte necesario, en lo que a esta ciencia se refiere, para afrontar temas de su especialidad en dónde la Física tiene protagonismo. Se adaptará el desarrollo de los contenidos teóricos y prácticos a cuestiones propias de la matemática, aplicando conceptos elementales del cálculo como análisis de gráficas para determinar trayectorias, movimientos, rotaciones, etc. Aplicaciones del concepto de límite, derivadas, integrales indefinidas y definidas para expresar magnitudes físicas en distintas situaciones. Se realizarán mediciones científicas en el laboratorio, como soporte al análisis teórico de fenómenos físicos para lograr una visión más amplia e integrada entre la Física y la Matemática. Las clases de laboratorio contribuirán a desarrollar en el estudiantes la capacidad de comprender otras formas de validación del conocimiento (método empírico). También se estimulará su habilidad para comprender otros paradigmas y lenguajes científicos y para trabajar en equipos interdisciplinarios.

Asignaturas Humanísticas (Inglés, Sociología de la Educación, Matemática y Sociedad)

En las asignaturas de idioma inglés se trabaja con contenidos disciplinares y lingüísticos que puedan ser transferidos a las actividades de aprendizaje que se desarrollan en las demás asignaturas que conforman el Plan de Estudio y que apoyan el desarrollo integral del estudiante.

La inclusión de la asignatura Sociología de la Educación se fundamenta en la necesidad de brindar al futuro egresado/a con categorías conceptuales y marcos teóricos que le permiten analizar críticamente los procesos de enseñanza.

La asignatura Matemática y Sociedad acercará al estudiante a teorías matemáticas utilizadas para el análisis de fenómenos sociales.

5.7.4 Transversalidad de contenidos y metodología: explicitación de los contenidos y metodologías transversales en los diferentes campos disciplinares o en espacios interdisciplinares.

Trayectos

Se consideran las siguientes temáticas, cuyo abordaje será transversal al plan de estudios.

Trayecto en Matemática Pura (TMP). Entendemos por matemática pura aquellos estudios matemáticos originados en problemas de la propia matemática. El nacimiento de lo que hoy denominamos matemática pura fue un hito importante en nuestra ciencia, pues implicó el posicionamiento epistemológico que la ciencia matemática es independiente del universo

sensible. Esto abrió múltiples nuevas líneas de investigación que, eventualmente, terminaron por nutrir también a la matemática aplicada.

Un aprendizaje significativo de nuestra ciencia implica que podamos reflexionar sobre la matemática en sí misma y analizar críticamente sus conclusiones y resultados. Todas las asignaturas específicas de la carrera aportan al trayecto de formación en matemática pura, sin embargo, algunas se caracterizan por hacerlo con más claridad y profundidad. Tal es el caso de Topología (1917), Medida e Integración (2263), Variables Complejas (1911), Geometría Diferencial (1915), Estructuras Algebraicas (1993) y Análisis Funcional (1916).

Trayecto en Matemática Aplicada (TMA). Entendemos por matemática aplicada aquellas teorías matemáticas destinadas a resolver problemas originados en otras ciencias o con más generalidad que provengan del estudio del mundo sensible.

Para los lineamientos curriculares en vigencia en nuestra universidad es un objetivo central la formación integral e interdisciplinaria del estudiante, por consiguiente, es importante que se destinen espacios curriculares que expongan aplicaciones de los conocimientos teóricos impartidos. Hay áreas de la matemática cuya génesis y evolución estuvieron y están fuertemente inspiradas en sus aplicaciones. Se incluyen en este plan materias que exponen los principios y aplicaciones de las áreas mencionadas. por ejemplo: Cálculo numérico y computacional (2030), Álgebra Lineal Aplicada (2261), Variables Complejas (1911), Ecuaciones Diferenciales (1913), Introducción a las Ecuaciones en Derivadas Parciales (2212), Física (1930) y Matemática y sociedad (2291).

Trayecto Ciencia de Datos (TCD). Pretende dar cuenta del surgimiento de nuevos objetos de estudio de las ciencias a partir de la conjugación de la aparición de nuevas tecnologías y la generación, almacenamiento y tratamiento de grandes volúmenes de datos. Estos emergentes han producido una creciente articulación entre líneas disciplinares como análisis y análisis numérico, machine learning, estadística, optimización, aprendizaje estadístico, entre otras. Además de las materias de formación básica comunes a todos los trayectos El TCD se compone de las siguientes asignaturas: Taller de Informática (1927), Probabilidades (1987), Estadística (1991), Álgebra Lineal Aplicada (2261), y Modelos de Regresión y Métodos Empíricos. Se prevé la posibilidad de una electiva de la Licenciatura en Ciencias de la Computación como Programación Avanzada y Algoritmos II.

Trayecto en Tecnologías de la Información (TTI). Desde tiempos remotos, la labor de los matemáticos fue asistida con el uso de recursos tecnológicos. En la actualidad, las Tecnologías de la Información (TI) se han tornado una componente central tanto en el terreno de la matemática pura como aplicada. Son utilizadas, por ejemplo, para establecer conjeturas, verificando la validez de un resultado en un gran número de casos; procesando grandes volúmenes de operaciones que intervienen en la simulación de sistemas complejos, como ser en dinámica molecular o mecánica de fluidos; analizando datos contenidos en bases de tamaño muy grande; etc.

Siguiendo a [227]:

«Muchas empresas están interesadas en la informática de alto rendimiento (o "supercomputación") para abordar Problemas industriales actuales... Las empresas necesitan experiencia en programación y modelado, librerías numéricas y una amplia gama de herramientas de software que funcionan en plataformas paralelas y distribuidas..Áreas de TI de rápido crecimiento son la visión artificial, procesamiento de imágenes, el procesamiento del lenguaje natural, recuperación de información y aprendizaje automático. »

El plan actual contempla una materia obligatoria específica relativa a TI: Taller de Informática (1927). A su vez se planifica diseñar prácticas para los/las estudiantes que contemplen el uso de TI en: Álgebra Lineal Aplicada (2261), Ecuaciones Diferenciales (1913), Introducción a la Ecuaciones en Derivadas Parciales (2212), Modelos de Regresión y Métodos Empíricos (2290) y Cálculo Numérico Computacional (2030).

Trayecto de Formación Socio-Política-Cultural y Pedagógica (TFSPCP). Tiene el objeto de una formación integral del/de la futuro/a egresado/a, entendiendo por ello que su paso por la universidad le debe aportar herramientas para comprender la sociedad y reflexionar de manera crítica sobre el ejercicio de la profesión. Como se señala en el documento "Hacia un currículo contextualizado, flexible e integrado, lineamientos para orientar la innovación curricular" (Aprobado por Resolución Nº 297/2017 del Consejo Superior) "este trayecto, apunta a la dimensión crítico-social de la formación, a la creación de conciencia social y ciudadana y a la participación en la cultura nacional". Se prevén dos asignaturas obligatorias en el TFSPCP: Sociología de la Educación y Matemática y sociedad.

Contenidos y competencias transversales

Los siguientes saberes y competencias serán de abordaje transversal en casi todas las materias.

Competencias. Proponer al/ a la estudiante prácticas y actividades que desarrollen las competencias enumeradas en la subsección 5.5.2. Identificar de manera crítica cuáles de estas competencias son desarrolladas en cada actividad curricular.

Aplicaciones. Contextualizar el conocimiento matemático dentro de la ciencia en general y dentro de la sociedad. Desarrollar aplicaciones de los conocimientos a otras áreas del saber y a la resolución de problemas del mundo real.

Sentido de los saberes. «Problematizar, indagar y reflexionar constantemente el sentido de la formación universitaria con la intención de mejorarla; además de asumir la responsabilidad social del conocimiento en términos de su integración con las prácticas profesionales, de investigación, de vinculación con el contexto y sustentada en principios éticos y de transformación hacia una sociedad justa y con valores igualitarios, sustentables y ciudadanos.»⁸

-

Resolución CS-UNRC 297/2017, "Hacia un currículo contextualizado, flexible e integrado. Lineamientos para la orientación de la innovación curricular"

Trabajo en equipo. Incentivar en el/la estudiante estrategias de trabajo colectivo. Proponer actividades curriculares de carácter grupal.

Alfabetización académica. Proponer a los/las estudiantes actividades que los preparen para la comunicación oral y escrita, para elaboración de sus trabajos finales de grado. Por ejemplo, proponiendoles que presenten informes de manera oral y escrita de algún tema en particular.

Prácticas Socio-Comunitarias. Incorporar a las materias este tipo de prácticas.

Integración de tecnologías de la información. Proponer a los/las estudiantes actividades que incluyan el uso de las tecnologías de la información y la programación.

Políticas de género. En el contexto de diferentes transformaciones institucionales como la Creación de la Comisión de Género de la Unión Matemática Argentina, la incorporación del apartado 6.f) al Artículo Segundo del nuevo Estatuto de la UMA, la creación de la Red Federal de Género y Diversidades del CONICET, entre otros antecedentes, se plantea la importancia de acompañar estas transformaciones con modificaciones curriculares. En este plan y en consonancia con la incorporación del apartado 6.f) al Artículo Segundo del nuevo Estatuto de la UMA, se busca promover la equidad en relación a los derechos de las mujeres e identidades disidentes en todos los quehaceres matemáticos como así también, procurar la eliminación de todo tipo de violencia y discriminación basadas en la identidad sexo-genérica. También, se busca favorecer "las acciones de discriminación positiva que tiendan a superar los problemas relacionados con las inequidades y el no reconocimiento de derechos" y " promover el apoyo de las vocaciones matemáticas en niñas y adolescentes y jóvenes. Visibilizar las posibilidades y los logros de matemáticas como modo de promoción de vocaciones".

Documentación. Para otras precisiones sobre criterios para la implementación de este plan se sugiere la lectura de los lineamientos curriculares de la UNRC⁹¹⁰, por lineamientos curriculares definidos en [187], y por consideraciones contenidas en documentos producidos por diferentes asociaciones que agrupan profesionales matemáticos: [253,226,227,66].

5.7.5 Correlatividades

	Materias Obligatorias					
Año	Cuat.	Códi go	Asignatura	Para C	Cursar	Para Rendir
				Regular	Aprobada	Aprobada
I	1	2282	Introducción al Cálculo	-	-	-
I	1	2283	Introducción al Álgebra	_	_	-
I	1	2284	Geometría Euclídea	_	_	_

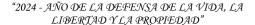
Hacia un currículo contextualizado, flexible e integrado", Resolución CS-UNRC 297/2017

_

Resolución CS-UNRC 008/2021

I	2	2285	Análisis Matemático I	2282	_	2282
I	2	2286	Álgebra Lineal	Ī-	-	2283
I	2	2287	Geometría Analítica	 -	-	2284
II	1	2288	Análisis Matemático II	2285 2287	2282	2282 2285 2287
II	1	1927	Taller de Informática	2282 2283	-	2282 2283
II	1	3402	Inglés I	2287 2285	-	2287 2285
II	1	2261	Álgebra Lineal Aplicada	2283 2286	-	2283 2286
II	2	3403	Inglés II	3402	-	3402
II	2	1987	Probabilidades	2286 2285		2286 2285
II	2	1993	Estructuras Algebraicas	2287 2286	2283	2283 2286 2287
Ш	1	1991	Estadística	1987	-	1987
III	1	2289	Fundamentos de Análisis	-	2288	2288
III	1	2030	Cálculo Numérico Computacional	2288 1927 2261	2285	2288 1927 2261 2285
Ш	2	1930	Física	 -	2288	2288
Ш	2	1911	Variables Complejas	2289 2286	_	2289 2286
Ш	2	1917	Topología	2289	2288	2288 2289
IV	1	2263	Medida e Integración	-	2289	2289
IV	1	1913	Ecuaciones Diferenciales	2289 2261	-	2289 2261 2288
IV	1	2064	Sociología de la Educación	-	_	-
IV	2	1915	Geometría Diferencial	2288 2261	-	2288 2261
IV	2	2290	Modelos de Regresión y Métodos Empíricos	1991	_	1991
IV	2	2212	Introducción a las Ecuaciones en Derivadas Parciales	1913	-	1913
٧	1	1916	Análisis Funcional	2263	1917	1917 2263
٧	1	2291	Matemática y Sociedad	-	2288 2286	2288 2286

V 2 2038 Trabajo Final	2261	2263 3403	2261 2263 3403
------------------------	------	--------------	-------------------


5.7.6 Otros requisitos necesarios para el cumplimiento del Plan de Estudios.

Con el propósito de articular los diferentes espacios de formación que ofrece la Universidad, y como un modo de otorgar mayor flexibilidad y contextualización al currículo, se exigirá además la participación del estudiante en otras actividades tales como proyectos de investigación, extensión, proyectos pedagógicos, ayudantías, tutorías, becas, proyectos institucionales, prácticas socio-comunitarias, voluntariado, participación en el gobierno universitario y cursos extracurriculares en el marco de congresos.

Las horas totales destinadas a estas actividades no deben ser menos que 60 y para que puedan ser reconocidas deben encontrarse formalizadas a través de resoluciones o certificadas por autoridades competentes. Serán acreditadas como actividades suplementarias a la formación curricular y constarán en los certificados analíticos, en tanto y en cuanto el estudiante realice la tramitación para su reconocimiento según la reglamentación vigente referida a la confección de certificados analíticos parciales y finales.

5.7.7 Análisis de la congruencia interna de la carrera

Alcance del Título	Perfil del Título	Contenidos y Actividades
Participar en equipos interdisciplinarios que utilicen la matemática.	Conocimientos: Probabilidades. Estadística. Ciencia de Datos. Ecuaciones diferenciales. Álgebra Lineal. Cálculo Numérico. Informática. Capacidades para: Formular problemas en lenguaje matemático. Analizar grandes conjuntos de datos Formular problemas en lenguaje matemático.	Se prevé desarrollar aplicaciones de la matemática y modelización en muchas de las asignaturas del plan de estudio, fundamentalmente en aquellas relacionadas con el TMA y TTI y TCD, como, por ejemplo, Física, Variables Complejas, Cálculo Numérico, Álgebra Lineal Aplicada, Estadística, Ecuaciones Diferenciales (ordinarias y parciales), Modelos de Regresión y Métodos Empíricos, Matemática y sociedad y además, eventualmente, en el ciclo de especialización. El aprendizaje en el uso de herramientas computacionales para resolver problemas se realizará en TTI.

Contribuir en la construcción de modelos matemáticos a partir de situaciones reales.

Utilizar las herramientas computacionales de cálculo numérico y simbólico para plantear y resolver problemas.

Comunicarse con otros profesionales no matemáticos.

Trabajar en equipos interdisciplinarios.

Habilidad para trabajar en contextos internacionales.

Capacidad de comprender otras formas de validación del conocimiento (método empírico).

Se planifica desarrollar la capacidad de manejar grandes conjuntos de datos en el TCD.

La inclusión de una materia electiva pone al/a la estudiante en situación de comunicarse con profesionales y pares de otras ciencias.

La asignatura Física acerca al estudiante a la validación por medio del método empírico.

La capacidad de los estudiantes de insertarse en contextos internacionales se verá favorecida por la asignatura inglés, la numerosa bibliografía en idioma extranjero que se usará, la incorporación de webinars en las materias, el reconocimiento de asistencia a cursos dirigidos a estudiantes en el marco de congresos de índole internacional, charlas brindadas por egresados de la carrera que se hayan integrado a programas de posgrado o experiencias laborales en el extranjero y las eventuales participaciones en programas de movilidad estudiantil

Realizar actividades de investigación en proyectos de matemática pura o aplicada. Conocimientos: Esencialmente todos los impartidos en la carrera.

Capacidades para:

Aprender, actualizarse y trabajar de manera autónoma.

Plantear y resolver problemas de matemática pura.

Idear demostraciones.

Construir y desarrollar argumentaciones lógicas con una identificación clara de hipótesis y conclusiones.

1) El aprendizaje significativo de la matemática implica que el estudiante se enfrente con prácticas de investigación pensadas para su desarrollo en el aula y coherentes con la etapa de construcción del conocimiento por parte del mismo. Por consiguiente, casi todos los espacios curriculares presuponen un aprendizaje en la metodología de la investigación en matemática pura y consecuentemente aportan en la dirección de desarrollar muchos de los perfiles indicados.

2)Más específicamente, el trabajo final de la carrera está destinado a la

•		1
	Extraer de una situación los rasgos más relevantes.	realización de un proceso de investigación.
	Iniciar investigaciones matemáticas bajo orientación de experto.	3) El TMP aportará a las capacidades y conocimientos vinculados con la investigación en matemática pura.
	Contribuir en la construcción de modelos matemáticos a partir de situaciones reales.	4) En cuanto a los perfiles más vinculados a la investigación interdisciplinaria y al análisis de datos
	Utilizar las herramientas computacionales de cálculo numérico y simbólico para plantear y resolver problemas.	se desarrollan en los TMA y TCD.
	Analizar grandes conjuntos de datos	
	Expresarse correctamente utilizando el lenguaje de la matemática.	
Intervenir como peritos matemáticos en organismos públicos o privados.	Conocimientos:	
	Muchos conocimientos pueden ser potencialmente útiles para este alcance. Por la incidencia que han adquirido en la actualidad se destacan aquellos vinculados con el análisis de datos y las tecnologías de la información. Además, es relevante una formación en métodos numéricos y modelización.	
	Capacidades para:	Contenidos abordados en los TMA, TCD, TTI y TFSPCyP.
	Valorar y respetar la diversidad y la multiculturalidad,	Trify it of Oyi.
	Contribuir en la construcción de modelos matemáticos a partir de situaciones reales,	
	Utilizar las herramientas computacionales de cálculo numérico y simbólico para plantear y resolver problemas,	
	Analizar grandes conjuntos de datos,	

	Comunicarea con atras	
	Comunicarse con otros profesionales no matemáticos,	
	Leer y escribir documentos específicos en idioma inglés, así como comunicarse con otros especialistas en este idioma.	
	Trabajar en equipos interdisciplinarios.	
		Claramente este es un alcance general de una carrera universitaria y no se pueden identificar contenidos o actividades específicas a él. Sin embargo, se resalta que la realización de un trabajo final facilita el desempeño del estudiante en futuras carreras de posgrado.
		Por otra parte, la profundidad de los temas abordados en el TMP permiten la inserción del egresado en programas de posgrado en instituciones de reconocido prestigio con una alta exigencia de nivel académico.
Acceder a carreras de posgrado.	Puede continuar con estudios de posgrado. Habilidad para trabajar en contextos internacionales	Puesto que existen muchos programas de posgrado que se desarrollan en el extranjero se valora como importante favorecer la capacidad de los egresados/as de insertarse en contextos internacionales. Esto se verá fortalecido por la asignatura inglés, la numerosa bibliografía en idioma extranjero que se usará, la incorporación de webinars en las materias, el reconocimiento de asistencia a cursos dirigidos a estudiantes en el marco de congresos de índole internacional, charlas brindadas por egresados de la carrera que se hayan integrado a programas de posgrado o experiencias laborales en el extranjero y las eventuales participaciones en programas de movilidad estudiantil

equipos docentes

enseñanza de la

matemática en los

niveles superiores de

dirigidos a la

enseñanza.

Conocimientos:

Pedagogía. Contenidos disciplinares específicos.

Participar de los Capacidades para:

Actuar con responsabilidad social y compromiso ciudadano,

Aprender, actualizarse y trabajar de manera autónoma,

Valorar y respetar la diversidad y la multiculturalidad,

Actuar en contextos educativos y planificar actividades de enseñanza.

El TFSPCyP aporta en la dirección de un ejercicio crítico del rol de enseñar. Las asignaturas disciplinares específicas forman al futuro egresado en el objeto que debe ser enseñado. La formación interdisciplinaria (Física 1930) y la electiva facilitan la integración en equipos docentes involucrados en la enseñanza de la matemática para estudiantes de disciplinas no matemáticas.

5.7.8 Criterios para orientar la implementación del Plan de Estudio en coherencia con las propuestas epistemológicas y metodológicas que lo constituyen. Seguimiento y acompañamiento académico a la implementación, gestión y evaluación del Plan.

El seguimiento de la ejecución de los planes de estudios será llevado adelante por la CCP de la carrera según lo establece la Resolución CD-FCEFQyN 269/14 (o sus modificatorias) mediante las siguientes acciones:

- Revisando los programas de las materias en cuanto a contenidos mínimos y perfiles del título.
- Receptando junto con la Subsecretaría de Asuntos Estudiantiles problemáticas que puedan aparecer entre los/las estudiantes para cursar y/o rendir asignaturas.
- Informando al Consejo del Departamento y a los docentes a cargo de las actividades curriculares sobre criterios a tener en cuenta en la implementación del plan.
- Organizando jornadas de reflexión sobre la práctica docente en cuanto a metodologías de enseñanza y evaluación, de identificación de objetos epistemológicos emergentes o la recuperación de algunos viejos que adquieren nueva significación y relevancia.
- Promoviendo la realización de cursos de posgrado dirigidos a la actualización docente, en particular para dar cuenta de las innovaciones contenidas en este plan.
- Analizando propuestas de formación para el ciclo de especialización.
- Entrevistando a egresados/as con el objeto de identificar conocimientos y capacidades que den cuenta de nuevas necesidades emergentes en el mundo laboral.

- Informando a los/as estudiantes sobre convocatorias a becas de investigación para estudiantes de grado y tendiendo puentes entre ellos y los equipos de investigación de nuestro departamento.
- Promoviendo la participación en programas de movilidad estudiantil.
- Mejorando la articulación entre niveles de enseñanza. Por esto nos referimos a la consistencia entre las competencias y conocimientos que el plan de estudios supone con aquellos adquiridos por el estudiante en el nivel medio de la enseñanza. En este sentido, conjuntamente con la CCP de la Carrera de Prof. en Matemática, se propone crear un grupo de trabajo coordinado por ambas comisiones e integrado por los equipos docentes de asignaturas correspondientes a los dos primeros años de estas carreras con el fin de paulatinamente converger hacia un nuevo paradigma de enseñanza que tome en cuenta las condiciones de los/las estudiantes ingresantes, las miradas alternativas que surgen de la investigación en la didáctica de la matemática con enfoques no tradicionales en la enseñanza de esta ciencia.

6. Recursos Humanos

6.1 Personal docente

APELLIDO Y NOMBRE	Carg o	Dedicación
ALTURRIA, Carmina	AY1	Exclusivo
BARBERIS, Patricia	P A D	Exclusivo
BARROS, Julio	PAS	Exclusivo
BELTRITTI, Gastón	JTP	Exclusivo
BIGOLIN, Sabina	AY1	Semi- Exclusivo
BOLLO, Carolina	PAD	Exclusivo
BRUNETTO, Gisela	AY1	Simple
BUFFARINI, Flavia	PAD	Exclusivo
BURI, Leopoldo	PAD	Exclusivo
CANALE, Dayana	AY1	Simple
CANTER, Claudina	JTP	Exclusivo
CASSANO, Valentin	PAD	Exclusivo
DEMARIA, Stefania	AY1	Exclusivo

Facultad de Ciencias Exactas, Físico-Químicas y Naturales

ELGUERO, Cecilia	PAD	Exclusivo
FERREYRA, David	PAD	Exclusivo
FERROCHIO, Eugenia	AY1	Exclusivo
GALLARDO, Norma	JTP	Exclusivo
GARIBOLDI, Claudia	PAS	Exclusivo
GIUBERGIA, Graciela	PAS	Exclusivo
GUEVARA, Laura	AY1	Simple
LEVIS, Fabián	PTI	Exclusivo
LLANES, Maria Luz	AY1	Simple
LORENZO, Marcelo	JTP	Exclusivo
MAERO, Andrea	JTP	Exclusiva
MAGALLANES, Adriana	PAD	Exclusivo
MALDONADO, Juliana	JTP	Semi- Exclusivo
MALPASSI, Silvana	JTP	Exclusivo
MATOS, Noelia	JTP	Semi- Exclusivo
MAZZONE, Fernando	PTI	Exclusivo
MOAS, Ruth Paola	AY1	Simple
NAVARRO, Victoria	AY1	Exclusivo
ORQUERA, Valentina	AY1	Simple
PALACIO, Gabriela	PAS	Exclusivo
PICCO, Mery	PAD	Exclusivo
PRIORI, Albina	PAD	Exclusivo
RODRIGUEZ, Claudla	PAD	Exclusivo
RUIZ, Marcelo	PAS	Exclusivo
SOSA, Marianela	AY1	Simple

De este plantel docente, 15 tienen el título de doctor y 13 de magíster. Se considera que se cuenta con una planta docente capacitada para llevar a cabo la totalidad del Plan de Licenciatura propuesto en lo que respecta a las asignaturas específicas de matemática. Además, se solicitará apoyo al Dpto. de Física para el dictado de Física y a la Facultad de Cs.

Humanas para el dictado de Inglés y Sociología de la Educación como así también a otros departamentos o facultades para el dictado de algunas asignaturas electivas.

6.2 Personal técnico y administrativo

La UNRC, FCEFQyN cuentan con personal administrativo suficiente para desarrollar esta carrera. Se requerirá la participación del área de registro de alumnos de la FCEFQyN, del Departamento de Coordinación de Aulas y Horarios (DCAyH), del área de Salud, Departamento de Becas, Biblioteca, Comedor, Diplomas y del personal administrativo afectado al DM.

7. Infraestructura Edilicia y Equipamiento

A continuación, se describen la infraestructura edilicia y el equipamiento que dispone el Dpto. de Matemática para el dictado de la Lic. en Matemática, del Prof. en Matemática y de las materias de apoyo en las carreras de la FCEFQyN donde se presta servicio.

7.1 Infraestructura edilicia: descripción de los recursos disponibles y necesidades futuras (localización, capacidad, estado de conservación).

La Universidad Nacional de Río Cuarto dispone de una adecuada infraestructura edilicia para el desarrollo normal de esta carrera. Cuenta con un Departamento de Coordinación de Aulas y Horarios (DCAyH) que planifica el uso de las 59 aulas comunes que tiene el campus universitario, más el Aula Mayor y el Aula Magna de la Facultad de Agronomía y Veterinaria.

La FCEFQyN cuenta con laboratorios de computación para el desarrollo de actividades prácticas que utilicen recursos informáticos.

El DM tiene una sala de uso prioritario que puede ser utilizada para el dictado de materias con pocos estudiantes. Está sala está equipada con un proyector de reciente adquisición, televisión y mobiliario variado.

Además de esta sala, la estructura edilicia del DM está compuesta de 16 oficinas (de aprox. $10m^2$ cada una) para uso de su personal docente y administrativo y 4 espacios de uso común (1 cocina, 2 baños, y 1 depósito) compartidas con el Dpto de Computación.

Como parte de este proyecto se prevé incrementar la intensidad en el uso de tecnologías de la información y recursos computacionales. En particular es deseable que los futuros Lic. en Matemática desarrollen competencias en programación de alto desempeño, como por ejemplo ejecutar métodos numéricos en paralelo. Para tal fin es recomendable que los/las estudiantes tengan acceso a un pequeño cluster o red de PCs, que no necesariamente debería estar alojado en el Dpto de Matemática, con el propósito de que adquiera experiencia en la dirección enunciada.

7.2 Equipamiento: descripción cualitativa y cuantitativa del equipamiento disponible y de las necesidades futuras.

La UNRC cuenta con biblioteca en donde los/las estudiantes acceden a gran parte de la bibliografía propuesta en los distintos espacios curriculares. Además, desde el campus

universitario, la biblioteca, a través de la Biblioteca Electrónica de Ciencia y Técnica de la Nación, ofrece el servicio de consulta de revistas especializadas, entre otras, algunas de las ofrecidas por SpringerLink, ScienceDirect EBSCOHost, JSTOR, Wiley Online Library, Project euclid y IEEE Xplore. La biblioteca además implementa un repositorio digital para, entre otras cosas, alojar las tesis de grado.

Las oficinas del Dpto de Matemática están equipadas con PCs. con acceso a internet.

El DCAyH de la UNRC proveé de proyectores para utilizar en el dictado de las asignaturas. Además el Dpto de Matemática posee 6 proyectores de uso exclusivo.

8. Asignación presupuestaria que demanda su implementación

La mayor parte de los recursos necesarios para la implementación de este proyecto son atribuibles al pago de los salarios del personal docente y administrativo necesario para sostenerlo. En menor proporción se producirán consumos de materiales de docencia (tizas, marcadores,etc), de servicios (luz, agua, gas, etc). A esto hay que sumarle el presupuesto necesario para el mantenimiento de los edificios y para compensar la depreciación y el desgaste de los bienes de uso que forman parte del patrimonio de la UNRC atribuible a su utilización para el dictado de la carrera.

Los recursos humanos docentes para implementar el plan de estudios contenido en esta propuesta se verá ligeramente aumentada respecto a la actual. Se adoptó el criterio de optimizar estos recursos, por ejemplo, compartiendo espacios comunes con otras carreras (caso Prof. en Matemática y Lic. en Física). Se considera que la planta docente con que cuenta el DM en la actualidad puede llevar adelante la propuesta actual, en gran medida por la dedicación y sacrificio del personal docente del DM. No obstante, para una ejecución óptima, sería recomendable que la planta docente del DM se vea aumentada. Esto permitiría desarrollar con más intensidad tareas de investigación y formación que son un complemento necesario para la calidad y excelencia de la formación de grado que se ofrece.

En líneas generales, no se prevé que el consumo de bienes materiales, el uso de instalaciones de infraestructura, la demanda de servicios que ofrece la UNRC y la atención por parte del personal administrativo se vea sensiblemente aumentada respecto a los que actualmente necesita la Lic. en Matemática. Si merece destacarse que es recomendable que la biblioteca de la UNRC sea actualizada con nuevos libros en el área de la matemática y que la Biblioteca Electrónica de Ciencia y Técnica de la Nación incorpore nuevos títulos de revistas y renueve la suscripción a otras que quedaron discontinuadas.

9. Síntesis de la Propuesta presentada.

Plan de Estudios de la Carrera de Licenciatura en Matemática.

Carrera de grado.

9.2 Acreditación

Licenciado/a en Matemática.

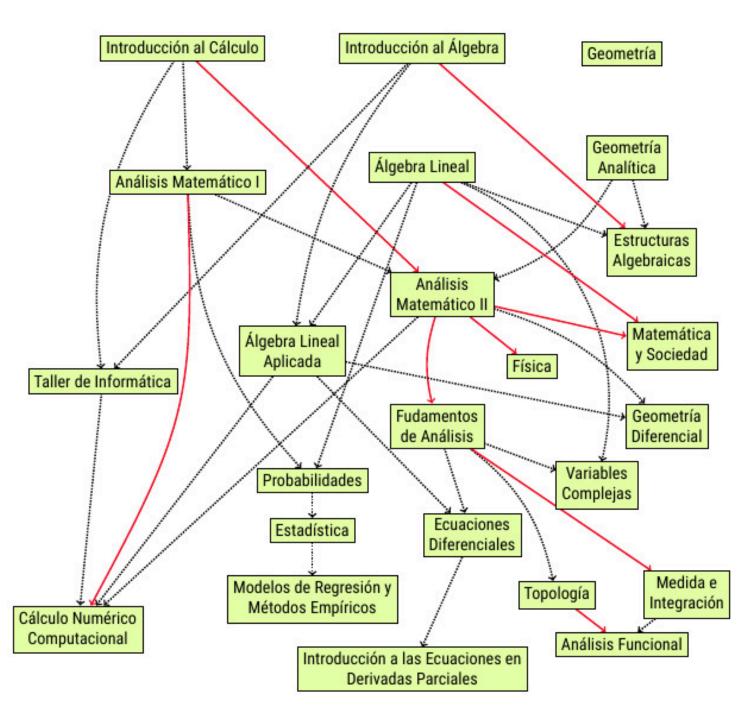
9.3 Alcance del título

Esta carrera habilita para:

- 1 Participar en equipos interdisciplinarios que utilicen la matemática.
- 2 Realizar actividades de investigación en proyectos de matemática pura o aplicada.
- 3 Intervenir como peritos matemáticos en organismos públicos o privados.
- 4 Acceder a carreras de posgrado y a becas para realizar estudios de posgrado.
- 5 Participar de los equipos docentes dirigidos a la enseñanza de la matemática en los niveles superiores de enseñanza.

9.4 Listado total de asignaturas

Primer año				
Cuat.	Códig o	Materia	hr. sem.	hr. Tot.
Ι	2282	Introducción al Cálculo	8	112
1	2283	Introducción al Álgebra	8	112
I	2284	Geometría Euclídea	6	84
Total de Hor	as cuatrir	mestre I	22	308
П	2285	Análisis Matemático I	8	112
П	2286	Álgebra Lineal	8	112
П	2287	Geometría Analítica	6	84
Total de Hor	Total de Horas cuatrimestre II		22	308
	Segundo año			
Ш	2288	Análisis Matemático II	8	112
Ш	1927	Taller de Informática	6	84
Ш	3402	Inglés I	4	56
Ш	2261	Álgebra Lineal Aplicada	8	112
Total de Horas cuatrimestre III		26	364	
IV	1987	Probabilidades	8	112
IV	1993	Estructuras Algebraicas	8	112
IV	3403	Inglés II	4	56
Total de Horas cuatrimestre IV		20	280	


Tercer año			
V 1991	Estadística	6	84
V 2289	Fundamentos de Análisis	8	112
V 2030	Cálculo Numérico Computacional	8	112
Total de Horas cuat	rimestre V	22	308
VI 1930	Física	6	84
VI 1911	Variables Complejas	8	112
VI 1917	Topología	8	112
Total de Horas cuat	rimestre VI	22	308
	Cuarto año		
VII 2263	Medida e Integración	10	140
VII 1913	Ecuaciones Diferenciales	8	112
VII 2064	Sociología de la Educación	4	56
Total de Horas cuatrimestre VII		22	308
VIII 1915	Geometría Diferencial	8	112
VIII 2290	Modelos de Regresión y Métodos Empíricos	8	112
VIII 2212	Introducción a las Ecuaciones en Derivadas Parciales	8	112
Total de Horas cuatrimestre VIII 24		24	336
	Quinto año		
IX 1916	Análisis Funcional	8	112
IX	Optativa I	10	140
IX	Electiva	6	84
Total de Horas cuatrimestre VII 22		22	336
X 2291	Matemática y Sociedad	4	56
Χ	Optativa II	10	140
X 2038	Trabajo Final	10	140
Total de Horas cuatrimestre VIII 20		336	
Actividades extracurriculares (ver 5.7.6)		60	
Total de Horas del Plan de estudios			3252

A. Apéndice: Cuadro de correlativas

En el siguiente cuadro se muestra la dependencia entre las materias obligatorias y específicas de la disciplina matemática dentro del plan. En el cuadro no se muestran materias cuyo dictado depende de la Facultad de Ciencias Humanas (Inglés I, II y Sociología de la Educación). Se señalan las correlatividades necesarias para cursar las asignaturas. Una línea punteada significa que es necesario tener regularizada la materia, mientras que una línea llena quiere decir que se necesita tenerla aprobada.

Bibliografía

- [1] Stephen Abbott. Understanding Analysis. Springer, 2015.
- [2] Thomas Agricola, Ilka & Friedrich. Elementary Geometry. American Mathematical Soc., 2008.
- [3] E. Aguirre. Geometría Diferencial de Curvas y Superficies. Universidad Complutense Madrid, 2007.
- [4] L. Ahlfors. Complex Analysis. McGraw-Hill, 1966.
- [5] Arseny V. Akopyan. Geometry of Conics. American Mathematical Society, 2007.
- [6] T. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, 2003.
- [7] David Applebaum. Limits, Limits Everywhere: The Tools of Mathematical Analysis. OUP Oxford, 2012.
- [8] I.G. Tsar'kov. A.R. Alimov. Chebyshev centres, jung constants, and their applications. Russian Math. Surveys, 74(5):775–849, 2019.
- [9] V.I. Arnol'd. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer New York, 2013.
- [10] V.I. Arnold, E. Khukhro, V.V. Kozlov, and A.I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences. Springer, Berlin Heidelberg, 2006.
- [11] S. Sahab A.S.B. Holland. Some remarks on simultaneous approximation. 1976.
- [12] Michele Audin. Geometry. Springer, 2002.
- [13] J.K. Baksalary, J. Hauke, and S. Liu X. Liu. Relationships between partial orders of matrices and their powers. Linear Algebra Appl., 379:277–287, 2004.
- [14] S. Barker. Filosofía de la matemática. UTHEA, México, 1965.
- [15] J. Barros. Notas sobre Variedades Diferenciables. 2022.
- [16] J. C. Barros. Notas de clase de geometría diferencial, 2019.
- [17] J. C. Barros. Notas de geometría diferencial de curvas y superficies, 2021.
- [18] J. C. Barros. Notas sobre grupos y Álgebras de lie y sus aplicaciones, 2022.
- [19] C. Bennett and R.C. Sharpley. Interpolation of Operators. Pure and Applied Mathematics. Elsevier Science, 1988.
- [20] Jerry Berele, Allan & Goldman. Geometry: Theorems and Constructions. Prentice Hall, 2001.
- [21] J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, 1985.
- [22] D. Bertsekas and J. Tsitsiklis. Introduction to Probability. Athena Scientific, 2002.

- [23] D. Betounes. Differential Equations: Theory and Applications. Springer New York, New York, 2009.
- [24] P. Bickel and K. Doksum. Mathematical Statistics. Wiley, 1987.
- [25] Garrett Birkhoff and Gian-Carlo Rota. Ordinary Differential Equations, volume 1. Wiley, 1989.
- [26] G. Boente and V. Yohai. Notas de Estadística. UBA, 2014.
- [27] Julián Fernández Bonder. Ecuaciones Diferenciales Parciales. Cursos de grado. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, 2015.
- [28] W.M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics. Academic Press, 2003.
- [29] David Borthwick. Introduction to Partial Differential Equations. Springer, 2017.
- [30] O. Bottema. Topics in Elementary Geometry. Springer Science & Business Media, 2008.
- [31] William E. Boyce and Richard C. Diprima. Elementary Differential Equations, 10th Edition. Wiley Global Education, 2012.
- [32] David A Brannan. Geometry. Cambridge University Press, 2012.
- [33] P. Bremaud. Markov Chains. Springer, 1999.
- [34] David Bressoud, Imène Ghedamsi, Victor Martinez-Luaces, and Günter Törner. Teaching and Learning of Calculus. Springer, 2016.
- [35] David M. Bressoud. A Radical Approach to Real Analysis. MAA, 2007.
- [36] David M. Bressoud. A Radical Approach to Lebesgue's Theory of Integration. Cambridge University Press, 2008.
- [37] David M. Bressoud. Calculus Reordered: A History of the Big Ideas. Princeton University Press, 2019.
- [38] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [39] G. Brousseau. Iniciación al estudio de la teoría de situaciones. Libros del Zorzal, Bs. As., 2007.
- [40] Victor Bryant. Metric Spaces: Iteration and Application. Cambridge University Press, 1985.
- [41] C.A. Buell and B. Shulman. Mathematics for Social Justice. CRC Press, 2021.
- [42] Catherine A. Buell and Bonnie Shulman. An introduction to mathematics for social justice. PRIMUS, 29(3-4):205–209, 2019.
- [43] R. Burden and J. Faires. Análisis numérico. Grupo Editorial Iberoamericano, 1985.
- [44] G. Buttazzo, M. Giaquinta, and S. Hildebrandt. One-dimensional Variational Problems: An Introduction. Oxford Lecture Series in Mathe. Clarendon Press, 1998.
- [45] Carrizo. Variedades Diferenciables. Universidad de Sevilla, 2015.

- [46] E.W. Cheney. Introduction to Approximation Theory. AMS Chelsea Publishing Series. McGraw-Hill, New York, 1966.
- [47] Y Chevallard. Aspectos problemáticos de la formación docente. In XVI Jornadas del Seminario Interuniversitario de Investigación en Didáctica de las Matemáticas.
- [48] Y Chevallard. El análisis de las prácticas docentes en la teoría antropológica de lo didáctico. Recherches en Didactique des Mathématiques, 19(2):221–266, 1999.
- [49] Y. Chevallard, M. Bosch, and J. Gascón. Estudiar matemáticas, el eslabón perdido entre enseñanza y aprendizaje. Barcelona: ICE Universidad Autónoma y Ed. Horsori, 1977.
- [50] R. Churchill. Variable Compleja y sus Aplicaciones. Mc. Graw Hill, 1992.
- [51] Claudio Cioffi-Revilla. Introduction to Computational Social Science: Principles and Applications, volume 1. Springer London, 2014.
- [52] Francis Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Springer Science & Business Media, feb 2013.
- [53] M.L. Soriano Comino. Aproximación simultánea en espacios normados, 1990. Universidad de Extremadura.
- [54] Robert A Conover. A First Course in Topology: An Introduction to Mathematical Thinking. Courier Corporation, 2014.
- [55] J. Conway. Functions of one complex variable. Springer, 1978.
- [56] John B. Conway. A Course in Point Set Topology. Springer Science & Business Media, 2013.
- [57] John B Conway. A Course in Functional Analysis. Springer, 2019.
- [58] A. Costa, M. Gamboa, and A. Porto. Notas de Geometria Diferencial de Curvas y Superficies. Editorial Sanz y Torres, Madrid, 2005.
- [59] Mischa Cotlar and Roberto Cignoli. An Introduction to Functional Analysis. North-Holland Publishing Company, 1974.
- [60] H. S. Coxeter. Introduction to Geometry. Birkhäuser Basel, 1981.
- [61] Samuel L. Coxeter, H. S. M. & Greitzer. Geometry Revisited. MAA, 1967.
- [62] Walter Craig. A Course on Partial Differential Equations. American Mathematical Soc., 2018.
- [63] C. M. Cuadras. Nuevos Métodos de Análisis Multivariante. CMC Editions Barcelona, 2020.
- [64] Y. Wei D. Cvetković. Algebraic Properties of Generalized Inverses. Springer, 2017.
- [65] V. Rakocević D. Djordjević. Lectures on generalized inverses. University of Nis, 2009.
- [66] A. Damlamian, J.F. Rodrigues, and R. Sträßer. Educational Interfaces between Mathematics and Industry: Report on an ICMI-ICIAM-Study. New ICMI Study Series. Springer International Publishing, 2013.

- [67] S.B. Malik D.E. Ferreyra. Core and strongly core orthogonal matrices. Linear Multilinear Algebra, 70 (20):5052–5067, 2022.
- [68] S.B. Malik D.E. Ferreyra. Some new results on the core partial order. Linear Multilinear Algebra, 70 (18):3449–3465, 2022.
- [69] M DeGroot. Optimal Statistical Decision. McGraw-Hill, 1970.
- [70] J. Devore. Probabilidad y Estadística para Ingeniería y Ciencias. Cencage Learning, 2012.
- [71] Emmanuele Dibenedetto. Real Analysis. Birkhäuser, 2016.
- [72] J. Dieudonne. Foundations of Modern Analysis. Read Books, 2008.
- [73] M. Do Carmo. Geometría Diferencial de Curvas y Superficies. Alianza Editorial, 1995.
- [74] Dorronsoro and Hernandez. Números- Grupos-Anillos. Universidad Autónoma de Madrid, 1999.
- [75] Pavel Drábek and Gabriela Holubová. Elements of Partial Differential Equations. Walter de Gruyter, 2007.
- [76] J. Dugundji. Topology. Prentice Hall, 1975.
- [77] Bradley Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Springer, 2015.
- [78] Y. Ekeland and R.Teman. Analyse Convexe et Problemes Variationnelles. Dunod-Gauthier Villars, 1973.
- [79] L. Evans. Partial differential equations. AMS, 1998.
- [80] B. S. Everitt, D. B. C. B. S. Everitt, and G. Dunn. Applied Multivariate Data Analysis. Wiley, 2001.
- [81] N. Fava and F. Zó. Medida e Integral de Lebesgue. Red Olimpica, 1996.
- [82] Roger Fenn. Geometry. Springer, 2000.
- [83] D.E. Ferreyra, M. Lattanzi, F.E. Levis, and N. Thome. Solving an open problem about the G-drazin partial order. Electron. J. Linear Algebra, 36:55–66, 2020.
- [84] D.E. Ferreyra, F.E. Levis, A.N. Priori, and N. Thome. The weak core inverse. Aequationes Math., 95:351–373, 2021.
- [85] D.E. Ferreyra, F.E. Levis, and N. Thome. Maximal classes of matrices determining generalized inverses. Appl. Math. Comput., 333:42–52, 2018.
- [86] D.E. Ferreyra, F.E. Levis, and N. Thome. Revisiting of the core-ep inverse and its extension to rectangular matrices. Quaest. Math., 41(2):265–281, 2018.
- [87] D.E. Ferreyra, F.E. Levis, and N. Thome. Characterizations of k -commutative equalities for some outer generalized inverses. Linear Multilinear Algebra, 68(1):177–192, 2020.
- [88] S. Qiao G. Wang, Y. Wei. Generalized Inverses: Theory and Computations. Science Press, 2003.

- [89] A. Galves and P. Ferrari. Construction of stochastic processes, coupling and regeneration. Instituto de Matemática e Estatística, 2001.
- [90] J Gascón. Incidencia del modelo epistemológico de las matemáticas sobre las prácticas docentes. Revista Latinoamericana de Investigación en Matemática Educativa, 4(2):129–159, 2001.
- [91] J. Gascón. El problema de la educación matemática y la doble ruptura de la Didáctica de la Matemática. La Gaceta de la Real Sociedad matemática español, 2002.
- [92] J. Gascón. Evolución de la didáctica de las matemáticas como disciplina científica. Recherches en Didactique des Mathématiques, 18(1):7–34, 2002.
- [93] Mariano Giaquinta and Giuseppe Modica. Mathematical Analysis: An Introduction to Functions of Several Variables. Springer Science & Business Media, 2009.
- [94] C. G. Gibson. Elementary Euclidean Geometry: An Introduction. Cambridge University Press, 2003.
- [95] G. Givens and J. Hoeting. Computational Statistics. Wiley, 2012.
- [96] Roger Godement. Analysis I. Springer Science & Business Media, 2004.
- [97] J. D. Godino. Construyendo un sistema modular e inclusivo de herramientas teóricas para la educación matemática. In J.M. Contreras, P. Arteaga, G.R. Cañadas, M.M
- Gea, B. Giacomone, and M.M. López Martín, editors, Actas del Segundo Congreso Internacional Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción matemáticos, 2017.
- [98] J. D. Godino, C. Batanero, and V. Font. The onto-semiotic approach to research in mathematics education. The International Journal on Mathematics Education, 39(1-2):127–135, 2007. Versión en español, ampliada y actualizada disponible en: Un enfoque ontosemiótico del conocimiento y la instrucción matemáticos Alagia, H, Bressan, A, Sadovsky, P (2007) Reflexiones teóricas para la Educación matemática. Libros del Zorzal. Bs. As.
- [99] C. Golub and C. Van Loan. Matrix Computation. The John Hopkins University Press, 1996.
- [100] R. Grimaldi. Matemática Discreta y Combinatoria. Addisonn-Wesley, 1998.
- [101] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, 4th edition, 2020.
- [102] J. F. Hair, E. Prentice, and D. Cano. Análisis multivariante. Fuera de colección Out of series. Pearson Educación, 1999.
- [103] Ernst Hairer and Gerhard Wanner. Analysis by Its History. Springer Science & Business Media, 2008.
- [104] Vagn Lundsgaard Hansen. Shadows of the Circle: Conic Sections, Optimal Figures and Non-Euclidean Geometry. World Scientific, 1998.
- [105] Robin Hartshorne. Geometry: Euclid and Beyond. Springer, 2005.

- [106] Matthew Harvey. Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry. The Mathematical Association of America, 2015.
- [107] Trevor Hastie, Jerome H. Friedman, and R J Tibshirani. The Elements of Statistical Learning. Springer, 2001.
- [108] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall, 2015.
- [109] S. Helgason. Differential Geometry, Lie Groups and Symmetric Space. AMS, 2012.
- [110] M. Hernández Cifre and J. Pastor González. Un curso de Geometría Diferencial. Consejo Superior de Investigaciones Cientificas, Madrid, 2010.
- [111] I. Herstein. Álgebra Moderna. De Trillas, 1994.
- [112] J. Hill. One-dimensional Stefan Problems. Longman, 1978.
- [113] Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, 2012.
- [114] R. Hocking. Methods and Applications of Linear Models. Wiley, 2013.
- [115] K. Hoffman and R. Kunze. Álgebra Lineal. Prentice Hall, 1981.
- [116] Paul Isihara, Edwin Townsend, Richard Ndkezi, and Kevin Tully. Math for the benefit of society: A new matlab-based gen-ed course. PRIMUS, 29(3-4):358–374, 2019.
- [117] A. Iske. Approximation Theory and Algorithms for Data Analysis. Texts in Applied Mathematics. Springer International Publishing, 2018.
- [118] O.F. Memdez J. Lang. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. CRC Press, 2019.
- [119] L. Tzafriri J. Lindenstrauss. Classical Banach Spaces II. Springer, 2013.
- [120] R. Houtari J. Shi. Simultaneous approximations from convex sets. Computers Math. Applic., 30:197–206, 1995.
- [121] Gareth James, Daniela Witten, Trevor Hastie, and Rob Tibshirani. An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics. Springer, 2017.
- [122] P. Jancsa and Farinatti M. Grupos y Álgebras de Lie. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física, 2010.
- [123] George A. Jennings. Modern Geometry With Applications. Springer Science & Business Media, 2012.
- [124] E. U. Jiménez and J. A. Manzano. Análisis multivariante aplicado: aplicaciones al marketing, investigación de mercados, economía, dirección de empresas y turismo. Thomson, 2005.
- [125] J. Hauke J.K. Baksalary. A further algebraic version of cochran's theorem and matrix partial orderings. Linear Algebra Appl., 127:157–169, 1990.

- [126] X. Liu J.K. Baksalary, O.M. Baksalary. Further relationships between certain partial orders of matrices and their squares. Linear Algebra Appl., 375:171–180, 2003.
- [127] Fritz John. Partial Differential Equations. Springer Science & Business Media, 1991.
- [128] R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall, 2013.
- [129] R Johnson and P. y Kuby. Estadística Elemental: lo esencial. Cengage Learning Editores, 2008.
- [130] Roger A. Johnson. Advanced Euclidean Geometry. Dover Publications, 2007.
- [131] R. Johnsonbaugh. Matemáticas Discretas. Pearson Educación, México, 2005.
- [132] Rafael Jacinto Villanueva Micó Juan Carlos Cortés López, Lucas Antonio Jódar Sánchez. Mathematical Modeling in Social Sciences and Engineering, volume 1. Nova Science Pub Inc, 2014.
- [133] K.S. Mohana K. Manjunatha Prasad. Core-ep inverse. Linear Multilinear Algebra, 62(6):792–802, 2014.
- [134] G. Karaali and L.S. Khadjavi. Mathematics for Social Justice: Resources for the College Classroom. Classroom Resource Materials. American Mathematical Society, 2019.
- [135] G. Karaali and L.S. Khadjavi. Mathematics for Social Justice: Focusing on Quantitative Reasoning and Statistics. Classroom Resource Materials. American Mathematical Society, 2021.
- [136] Gizem Karaali and Lily S. Khadjavi. Unnatural disasters: Two calculus projects for instructors teaching mathematics for social justice. PRIMUS, 29(3-4):312–327, 2019.
- [137] Y. Karakus. On simultaneous approximation. Note di Matematica, 21(1):71–76, 2002.
- [138] T. Kato. Perturbation theory for linear operators. Springer, 1976.
- [139] Nikolaos Katzourakis and Eugen Varvaruca. An Illustrative Introduction to Modern Analysis. CRC Press, 2018.
- [140] J. Kelley. Topología General. Eudeba, 1962.
- [141] D. Kincaid and W. Cheney. Cálculo Numérico. Addisson- Wessley, 1994.
- [142] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and their Applications. Academic Press, 1980.
- [143] G. Klimovsky. Las Desventuras del Conocimiento Matemático. AZ editora, 2005.
- [144] A. Knapp. Lie Groups Beyond an Introduction, volume 140 of Progress in Mathematics. Birkhauser, Boston, MA., 1996.
- [145] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Courier Corporation, 1975.
- [146] Alexander Komech and Andrew Komech. Principles of Partial Differential Equations. Springer Science & Business Media, 2009.

- [147] Vilmos Komornik. Topology, Calculus and Approximation. Springer London, 2017.
- [148] M. A. Krasnosel'skii and Ja. B. Rutickii. Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961.
- [149] Teresa Krick. Álgebra I. Fasciculos de grado. Departamento de Matemática, FCEyN, Universidad de Buenos Aires., 2017.
- [150] H. Kurata. Some theorems on the core inverse of matrices and the core partial ordering. Appl. Math. Comput., 316:43–51, 2018.
- [151] S. Lang. Álgebra. Adisson-Wesley, 1974.
- [152] Peter D. Lax and Maria Shea Terrell. Calculus With Applications. Springer Science & Business Media, 2013.
- [153] Peter D. Lax and Maria Shea Terrell. Multivariable Calculus With Applications. Springer, 2018.
- [154] E.L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 1998.
- [155] CCP Lic. en Matemática. Actividades investigación evaluativa, licenciatura en matemática, 2018.
- [156] P.K. Lin. Strongly unique best approximation in uniformly convex banach spaces. J. Approx. Theory, 56:101–107, 1989.
- [157] M. Loève. Probability Theory, volume I. Springer, 1977.
- [158] J. L. Lopez. Geometría Diferencial de Curvas y Superficies en el espacio Euclideo. Universidad Complutense Madrid, 2010.
- [159] G.G. Lorentz. Approximation of Functions. AMS Chelsea Publishing Series. Holt, Rinehart and Winston, 2005.
- [160] Do Carmo M. Geometria Riemanniana. IMPA, 2015.
- [161] A. Salemi M. Mehdipour. On a new generalized inverse of matrices. Linear Multilinear Algebra, 66:1046–1053, 2018.
- [162] Barbara D. MacCluer, Paul S. Bourdon, and Thomas L. Kriete. Differential Equations: Techniques, Theory, and Applications, volume 1. American Mathematical Soc., 2019.
- [163] S.B. Malik. Some more properties of core partial order. Appl. Math. Comput., 221:192–201, 2013.
- [164] K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, 1919.
- [165] J. Marsden and A. Tromba. Cálculo Vectorial. Addison-Wesley, 2004.
- [166] J. Mawhin. Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences. Springer New York, 2013.
- [167] John McCleary. A First Course in Topology: Continuity and Dimension. American Mathematical Soc., 2006.

- [168] W. Mendenhall, R.J. Beaver, and B.M. Beaver. Introducción a la probabilidad y estadística. Cengage Learning Editores, 2015.
- [169] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
- [170] J. Soria M.J. Carro, J.A. Raposo. Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. AMS, 2007.
- [171] Z.D. Ren M.M. Rao. Theory of Orlicz spaces. Marcel Dekker, 1991.
- [172] Vicente Montesinos, Peter Zizler, and Václav Zizler. An Introduction to Modern Analysis. Springer, 2015.
- [173] S.A. Morris, Statistics University of New England. Department of Mathematics, and Computing Science. Topology Without Tears. University of New England, 1989.
- [174] E. Moschetti, S. Ferrero, G. Palacio, and M. Ruiz. Introducción a la Estadística para las Ciencias de la Vida. UniRío Editora. UNRC, 2013.
- [175] J. Munkres. Topology. Prentice Hall, 2000.
- [176] J. Muñoz Pérez. Curvas y Superficies. Universidad de Granada, 2017.
- [177] Ahmad K. Naimzada, Silvana Stefani, and Anna Torriero. Networks, Topology and Dynamics: Theory and Applications to Economics and Social Systems, volume 1. Springer Science & Business Media, 2008.
- [178] B. O Neill. Elementos de Geometría Diferencial. Limusa, 1972.
- [179] O'Brien. Estructuras Algebraicas III (Grupos finitos). Cuadernillos de la UBA, 1980.
- [180] Barbara O'Donovan and Krisan Geary. Measuring income inequality in a general education or calculus mathematics classroom. PRIMUS, 29(3-4):244–258, 2019.
- [181] Charles Stanley Ogilvy. Excursions in Geometry. Courier Corporation, 1989.
- [182] C. Olmos and J. C. Barros. Differential Geometry, Lie Groups and Symmetric Space. 2018.
- [183] Eduardo L Ortiz. Julio Rey Pastor, posición en la escuela matemática argentina. Rev. Un. Mat. Argentina, 52:1, 2011.
- [184] Mícheál O'Searcoid. Metric Spaces. Springer London, 2006.
- [185] P. Hästö P. Harjulehto. Orlicz Spaces and Generalized Orlicz Spaces. Springer, 2019.
- [186] Richard S. Palais and Robert Andrew Palais. Differential Equations, Mechanics, and Computation, volume 1. American Mathematical Soc., 2009.
- [187] M.J.A. Paniagua, Universidad de Deusto, and Rijksuniversiteit Groningen. Educación superior en América Latina, reflexiones y perspectivas en Matemáticas. Universidad de Deusto, 2013.
- [188] E. Parzen. Teoría Moderna de Probabilidades y sus Aplicaciones. Limusa, 1987.

- [189] D. Peña. Análisis de datos multivariantes. McGraw-Hill Interamericana de España S.L., 2002.
- [190] J. Piaget and R. García. Psicogénesis e historia de las ciencias. Siglo XXI, México, 1986.
- [191] Yehuda Pinchover and Jacob Rubinstein. An Introduction to Partial Differential Equations. Cambridge University Press, 2005.
- [192] A. Pinkus. On I1-approximation. 1989.
- [193] A. Pinkus. Uniqueness in vector-valued approximation. J. Approx. Theory, 73:17–92, 1993.
- [194] K. Pooper. El desarrollo del pensamiento científico. Conjeturas y refutaciones. Paidos, 1956.
- [195] Alfred S. Posamentier. Advanced Euclidean Geometry: Excursions for Secondary Teachers and Students With Geometer's Sketchpad V5 Set. John Wiley & Sons Incorporated, 2010.
- [196] M.J.D. Powell and P.A.N.A.M.J.D. Powell. Approximation Theory and Methods. Cambridge University Press, 1981.
- [197] A. Pressley. Elementary Differential Geometry. Springer, 2012.
- [198] C. R. Rao and H. Toutenburg. Linear Models. Least Squares and Alternatives. Springer, 2007.
- [199] J. Rawlyngs. Applied Regression Analysis: A Research Tool. Wadsworth & Brooks, 1988.
- [200] G.P.H. Styan R.E. Hartwig. On some characterizations of the star partial ordering for matrices and rank subtractivity. Linear Algebra Appl., 82(2):145–161, 1986.
- [201] A.C. Rencher and W.F. Christensen. Methods of Multivariate Analysis. John Wiley, 2012.
- [202] J.R. Rice. The Approximation of Functions: Linear theory. Addison-Wesley Series in Computer Science and Information Processing. Mass., Addison-Wesley Publishing Company, 1964.
- [203] Fred Roberts. Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, volume 1. Springer New York, 2012.
- [204] J. Roederer. Mecánica elemental. EUDEBA, 1986.
- [205] V. Rohatgi. An Introduction to Probability Theory and Mathematical Statistical. John Wiley and Sons, 1976.
- [206] Daniel Rose and Alexander Stepanov. From Mathematics to Generic programming. Addison-Wesley, 1st edition, 2015.
- [207] John Ross and Therese Shelton. Supermarkets, highways, and natural gas production: Statistics and social justice. PRIMUS, 29(3-4):328–344, 2019.
- [208] K. Ross and Ch. Wright. Matemáticas Discretas. Prentice Hall, México, 1988.
- [209] S. Ross. A first course in probability. Pearson, 2018.

- [210] W. Rudin. Análisis Funcional. Editorial Reverté, 2002.
- [211] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.
- [212] Lee Rudolph. Qualitative Mathematics for the Social Sciences: Mathematical Models for Research on Cultural Dynamics, volume 1. Routledge, 2013.
- [213] Donald G. Saari. Mathematics Motivated by the Social and Behavioral Sciences, volume 1. SIAM, 2018.
- [214] P Sadovsky. Un marco para pensar y actuar la enseñanza de la matemática. PhD thesis, UBA, 2004.
- [215] Sandro Salsa. Partial Differential Equations in Action: From Modelling to Theory. Springer, 2016.
- [216] N. Thome S.B. Malik. On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput., 226:575–580, 2014.
- [217] H. Scheffe. The Analysis of Variance. Wiley, 1999.
- [218] M Schervish. Theory of Statistics. Springer, 1997.
- [219] S. Searle. Modelos Lineales. John Wiley & Sons, 1971.
- [220] F. Sears. Mecánica y movimientos ondulatorios. Aguilar, 1965.
- [221] P. Sen and J. Singer. Large Sample Methods in Statistics. Chapman & Hall, 1993.
- [222] Raymond Séroul. Programming for Mathematicians. Universitext. Springer, 2000. Translated from the French by Donald O'Shea.
- [223] E.M. Semenov S.G. Krein, Ju.I. Petunin. Interpolation of linear operators. AMS, 1982.
- [224] Satish Shirali and Harkrishan Lal Vasudeva. Metric Spaces. Springer Science & Business Media, 2006.
- [225] A. Shiryaev. Probability. Springer, 1996.
- [226] SIAM. SIAM Report on Mathematics in Industry. SIAM, 1996.
- [227] SIAM. Mathematics in Industry. SIAM, 2012.
- [228] Simmons. Introduction to Topology and Modern Analysis. Tata McGraw-Hill Education Private, 2004.
- [229] George Finlay Simmons and Steven George Krantz. Differential Equations: Theory, Technique, and Practice. McGraw-Hill Higher Education, 2007.
- [230] I. Singer. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Grundlehren der mathematischen Wissenschaften. Springer, 1970.
- [231] S.B. Malik S.K. Mitra, P. Bhimasankaram. Matrix partial orders, shorted operators and applications. World Scientific, 2010.

- [232] O. Skovsmose. Hacia una Filosofía de la Educación Matemática Crítica. Una empresa docente, Universidad de los Andes, Bogotá, 1999.
- [233] O. Skovsmose and P. Valero. Educación Matemática Crítica: Una visión sociopolítica del aprendizaje y la enseñanza de las matemáticas. Ediciones Uniandes, Bogotá, Colombia, 2012.
- [234] C.D. Meyer Jr. S.L. Campbell. Generalized Inverses of Linear Transformations. SIAM, 2009.
- [235] J. Sotomayor. Lições de Equações Diferencias Ordinárias. Instituto de Matemática Pura e Aplicada, CNPq, Brasília, 1979.
- [236] K. Spindelböck and R.E. Hartwig. Matrices for which a* and at commute. Linear Algebra Appl., 14(3):241-256, 1984.
- [237] M. Spivak. Calculus. Reverté, 2006.
- [238] Edgardo L Fernández Stacco. 200 años de la matemática en la argentina. Publicaciones INMABB, 15:2013, 2011.
- [239] Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, 2009.
- [240] G. Strang. Álgebra lineal y sus aplicaciones. Adison-Wesley, 1986.
- [241] Urszula Strawinska-Zanko and Larry S. Liebovitch. Mathematical Modeling of Social Relationships: What Mathematics Can Tell Us About People, volume 1. Springer International Publishing, 2018.
- [242] Terence Tao. An Introduction to Measure Theory. American Mathematical Society, 2013.
- [243] D. Tarzia. Problemas de Conducción del Calor-El Problema de Stefan. Posadas, 1996.
- [244] G. Teschl. Ordinary Differential Equations and Dynamical Systems. Graduate studies in mathematics. American Mathematical Society, 2012.
- [245] G.B. Thomas. Cálculo: una variable. Cálculo. Pearson Educación, 2005.
- [246] G.B. Thomas. Cálculo: varias variables. Cálculo. Pearson Educación, 2006.
- [247] Otto Toeplitz. The Calculus: A Genetic Approach. University of Chicago Press, 2018.
- [248] G. Trenkler and O.M. Baksalary. Core inverse of matrices. Linear Multilinear Algebra, 58(6):681–697, 2010.
- [249] G. Trenkler and O.M. Baksalary. On a generalized core inverse. Appl. Math. Comput., 236:450–457, 2014.
- [250] M. Triola. Estadística. Pearson Educación, 2009.
- [251] W. Tu, Loring. An introduction to Manifolds. Springer Science, 2011.
- [252] Aslak Tveito and Ragnar Winther. Introduction to Partial Differential Equations: A Computational Approach. Springer Science & Business Media, 1998.
- [253] UMA. Oferta educativa universitária de matemática, 1997.

- [254] M. Krbec V M Kokilashvili. Weighted inequalities in Lorentz and Orlicz spaces. World Scientific, 1991.
- [255] S. Varadhan. Probability Theory. AMS, 2001.
- [256] András Vasy. Partial Differential Equations. American Mathematical Soc., 2015.
- [257] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, 2002.
- [258] Gerard A. Venema. Exploring Advanced Euclidean Geometry With GeoGebra. MAA, 2013.
- [259] O. Villamayor. Geometría Elemental a Nivel Universitario, volume I. Red Olímpica OMA, 1997.
- [260] Robert Wagenaar, María Grabiela Siufi García, Maida Marty Maletá, César Esquetini, Pablo Beneitone, and Julia María González Ferreras. Reflexiones y perspectivas de la Educación Superior en América Latina informe final, Proyecto Tuning, América Latina 2004-2007. Universidad de Deusto, 2007.
- [261] Stefan Waldmann. Topology: An Introduction. Springer, 2014.
- [262] H. Wang. Core-ep decomposition and its applications. Linear Algebra Appl., 508:289–300, 2016.
- [263] Huijiong Wang and Shantong Li. Introduction to Social Systems Engineering, volume 1. Springer Singapore, 2018.
- [264] Jared Warner. The brokenness of broken windows: An introductory statistics project on race, policing, and criminal justice. PRIMUS, 29(3-4):281–299, 2019.
- [265] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2005.
- [266] R.L. Wheeden and A. Zygmund. Measure and Integral: An Introduction to Real Analysis, Second Edition. Chapman & Hall/CRC Pure and Applied Mathematics. CRC Press, 2015.
- [267] Michel Willem. Functional Analysis: Fundamentals and Applications. Springer Science & Business Media, 2013.
- [268] D. Winer Montgomery, E. Peck, and G. Vining. Introducción al Análisis de Regresión Lineal. Compañía Editorial Continental. México., 3rd edition, 2006.
- [269] J. Wright and Y. Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications. Cambridge University Press, 2022.
- [270] S. Wright and B. Recht. Optimization for Data Analysis. Cambridge University Press, 2022.
- [271] María Luisa Ledesma Jimena Clerici (Compiladoras) y Carolina Roldán. Alfabetización académica: prácticas de lectura y escritura en la UNRC. UniRío editora. Universidad Nacional de Río Cuarto, 2022.

Universidad Nacional de Río Cuarto Confeccionado el Lunes 04 de noviembre de 2024 a las 09:26:41

Este documento se valida en https://fd.unrc.edu.ar con el identificador: DOC-2024_382_Plan Lic Matematica [aa225f].

Documento firmado conforme Ley 25.506 y Resolución Rectoral 255/2014 por:

GERMAN GUSTAVO BARROS

Decano

Facultad de Cs. Exactas Fco. Qcas. y Nat.

MARÍA EUGENIA FERROCCHIO

Secretaria Académica

Facultad de Cs. Exactas Fco. Qcas. y Nat.